精英家教网 > 初中数学 > 题目详情
1.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是(  )甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是(  )
A.前2分钟,乙的平均速度比甲快
B.甲、乙两人8分钟各跑了800米
C.5分钟时两人都跑了500米
D.甲跑完800米的平均速度为100米/分

分析 根据函数图象可以判断各选项是否正确,从而可以解答本题.

解答 解:前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项A正确;
由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项B错误;
由图可知,5分钟时两人都跑了500米,故选项C正确;
由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;
故选B.

点评 本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.如图,在菱形ABCD中,∠B=120°,AB=4,点E是BC的中点,点F在CD边上,点C关于EF的对称点为C′,连接EC′,FC′,当点F从C运动到点D的过程中,AC′长度的最大值与最小值的差为4$\sqrt{3}$-2$\sqrt{7}$+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,⊙O中,直径AB与弦CD相交,E是AC延长线上一点,连接BC、BD,且∠EBC=∠D.
(1)求证:EB是⊙O的切线;
(2)若⊙O的半径为5,且tanD=$\frac{1}{2}$,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在直角坐标系中,⊙A的半径为5厘米,圆心A的坐标为(-1,4),点P(3,-1)与⊙A的位置关系是(  )
A.在圆上B.在圆内C.在圆外D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列计算正确的是(  )
A.3a-2a=1B.a6÷a2=a3C.(2ab)3=6a3b3D.-a4•a4=-a8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据;
投资量x(万元)2
种植树木的利润y1(万元)4
种植花卉的利润y2(万元)2
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额万元,种植花卉和树木共获利润W万元,求出W与m之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万元,在(2)的条件下,求出投资种植花卉的金额m的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题情境
已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+$\frac{S}{x}$)(x>0)
探索研究
我们可以借鉴学习函数的经验,先探索函数y=x+$\frac{1}{x}$(x>0)的图象性质.
①列表:
x$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$1234
y$\frac{17}{4}$m$\frac{5}{2}$2$\frac{5}{2}$$\frac{10}{3}$$\frac{17}{4}$
表中m=$\frac{10}{3}$;
②描点:如图所示;
③连线:请在图中画出该函数的图象;
④观察图象,写出两条函数的性质;函数有最小值2;当x>1时,y随x的增大而增大
解决问题
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+$\frac{1}{x}$(x>0)的最小值.
y=x+$\frac{1}{x}$=${(\sqrt{x})}^{2}$+${(\sqrt{\frac{1}{x}})}^{2}$=${(\sqrt{x})}^{2}$+${(\sqrt{\frac{1}{x}})}^{2}$-2$\sqrt{x}$•$\sqrt{\frac{1}{x}}$+2$\sqrt{x}$•$\sqrt{\frac{1}{x}}$=${(\sqrt{x}-\sqrt{\frac{1}{x})}}^{2}$+2
∵${({\sqrt{x}-\sqrt{\frac{1}{x}}})^2}$≥0,∴y≥2
∴当$\sqrt{x}$-$\sqrt{\frac{1}{x}}$=0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在反比例函数y=$\frac{1-3k}{x}$的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是(  )
A.k≥$\frac{1}{3}$B.k>$\frac{1}{3}$C.k<-$\frac{1}{3}$D.k<$\frac{1}{3}$

查看答案和解析>>

同步练习册答案