【题目】在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=60°,求∠ACF的度数.
【答案】(1)Rt△ABE≌Rt△CBF;(2)∠ACF=30°.
【解析】
试题(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;
(2)由等腰直角三角形的性质易求∠BAE=∠CAE﹣∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.
(1)证明:在Rt△ABE和Rt△CBF中,
∵,
∴Rt△ABE≌Rt△CBF(HL);
(2)如图,∵在△ABC中,AB=CB,∠ABC=90°,
∴∠ACB=∠CAB=45°,
∴∠BAE=∠CAE﹣∠CAB=15°.
又由(1)知,Rt△ABE≌Rt△CBF,
∴∠BAE=∠BCF=15°,
∴∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.
科目:初中数学 来源: 题型:
【题目】小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:
(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OD=OC,添加下列四个条件中的一个,仍不能得到△ODA与△OCB全等的是( )
A.∠D=∠CB.OA=OBC.BD=ACD.AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是( )
A.B.3S
C.4SD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始出发,按C→A→B→C的路径运动,且速度为每秒2cm,设出发的时间为t秒.
(1)填空:AC= cm;
(2)若点P恰好在∠ABC的角平分线上,求t的值;
(3)当t为何值时,△BPC为等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=ABAC④OE=AD⑤S△APO=,正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com