精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2
(1)求实数m的取值范围;
(2)当x12+x22=7时,求m的值.
分析:(1)根据一元二次方程的根的判别式的意义得到△=(2m-1)2-4m2≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=-(2m-1),x1•x2=m2,再把x12+x22=7变形得到(x1+x22-2x1•x2=7,则(2m-1)2-2m2=7,然后解方程,再确定满足条件的m的值.
解答:解:(1)根据题意得△=(2m-1)2-4m2≥0,
解得m≤
1
4


(2)根据题意得x1+x2=-(2m-1),x1•x2=m2
x12+x22=7
∴(x1+x22-2x1•x2=7,
∴(2m-1)2-2m2=7,
整理得m2-2m-3=0,
解得m1=3,m2=-1,
∵m≤
1
4

∴m=-1.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案