精英家教网 > 初中数学 > 题目详情
某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:
 
A种产品
B种产品
成本(万元/件)
2
5
利润(万元/件)
1
3
(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润。
(1)A种产品8件,B种产品2件(2)有6种方案:生产A产品2件,B产品8件; A产品3件, B产品7件;A产品4件, B产品6件;A产品5件,B产品5件;A产品6件,B产品4件;A产品7件,B产品3件。(3)生产A产品2件、B产品8件时 ,可获得最大利润16万元
解:(1)设生产A种产品x件,则生产B种产品10-x件,根据题意,得
x+3(10-x)=14,解得,x=8。
则10-x=10-8=2。
∴应生产A种产品8件,B种产品2件。
(2)设应生产A种产品x件,则生产B种产品有10-x件,根据题意,得
,解得:2≤x<8。
∴可以采用的方案有6种方案:生产A产品2件,B产品8件; A产品3件, B产
品7件;A产品4件, B产品6件;A产品5件,B产品5件;A产品6件,B产品4件;A产品7件,B产品3件。
(3)设生产A种产品x件时,利润为z万元,根据题意,得
z=x·1+(10-x)·3=-2x+30,
∵-2<0,∴随着x的增大,z减小。
∴当x=2时,z最大,最大利润z=-2×2+30=26。
所以当生产A产品2件、B产品8件时 ,可获得最大利润16万元。
(1)设生产A种产品x件,则生产B种产品有10-x件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解。
(2)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数。
(3)由已知列出函数关系式,由一次函数的性质即可求解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

若一次函数y=-2x+b的图像经过点(2,2).(1)求b的值;(2)在图中画出此函数的图像;(3)观察图像,直接写出y<0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与直线相交于点,直线轴交于点,平行于轴的直线分别交直线、直线两点(点的左侧)
⑴点的坐标为                  
⑵如图1,若点在线段上,在轴上是否存在一点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,说明理由;
⑶如图2.若以点为直角顶点,向下作等腰直角,设重叠部分的面积为,求的函数关系式;并注明的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是
A.x<2B.x>2C.x<3D.x>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大陆相关部门于2007年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元)
38
37
36
35

20
每天销量(千克)
50
52
54
56

86
设当单价从38元/千克下调了元时,销售量为千克;
(1)写出间的函数关系式(不用写出自变量的取值范围);
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿
AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是
【   】
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是【 】
A.甲、乙两地的路程是400千米
B.慢车行驶速度为60千米/小时
C.相遇时快车行驶了150千米
D.快车出发后4小时到达乙地

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=-2x-3的图象上某点的纵坐标为3,则该点的坐标是_________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=与直线y=x相交于A、B两点,B点坐标为(-2,-2),则A点坐标为                

查看答案和解析>>

同步练习册答案