【题目】已知:如图,□ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B点重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证:△BEF∽△CEG;
(2)求用x表示S的函数表达式,并写出x的取值范围;
(3)当E点运动到何处时,S有最大值,最大值为多少?
【答案】(1)见解析;(2)(3)当x=3时,S最大值.
【解析】
(1) 由∠BFG=∠G=90°,∠BEF=∠CEG,得△BEF∽△CEG;
(2)设BE=x,在平行四边形ABCD中,因为∠BAD=120°所以∠B=60°=∠ECG,又BE=x,EC=3-x,所以EF、CG可利用三角函数求出,即在△EFG中,边和边上的高就为已知,从而求出解析式;
(3)由抛物线的开口方向和对称轴可得,当0<x≤3时,S随x的增大而增大,
所以,当x=3时,即E与C重合时,取最大值.
(1)证明:∵EF⊥AB,AB∥DC,
∴EF⊥DG.
∴∠BFG=∠G=90°.
又∵∠BEF=∠CEG,
∴△BEF∽△CEG;
(2)解:由(1)得DG为△DEF中EF边上的高,设BE=x,
在Rt△BFE中, EF=BEsinB=x.
在Rt△CEG中,CE=3x,GC=(3x)cos60°=,
得DG=DC+GC=,
所以,S=EFDG=x2+x,(其中0<x≤3);
(3)解:∵a=<0,对称轴x=>3,
∴当0<x≤3时,S随x的增大而增大,
所以,当x=3时,即E与C重合时,取最大值S最大值=3.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.
(1)求m,n的值及抛物线的解析式;
(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;
(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣(x﹣m)2+4(m>0)的顶点为A,与直线x=相交于点B,点A关于直线x=的对称点为C.
(1)若抛物线y=﹣(x﹣m)2+4(m>0)经过原点,求m的值.
(2)点C的坐标为 .用含m的代数式表示点B到直线AC的距离为 .
(3)将y=﹣(x﹣m)2+4(m>0,且x≥)的函数图象记为图象G,图象G关于直线x=的对称图象记为图象H.图象G与图象H组合成的图象记为图象M.
①当图象M与x轴恰好有三个交点时,求m的值.
②当△ABC为等腰直角三角形时,直接写出图象M所对应的函数值小于0时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角中,,的垂直平分线交于点,交于点,交于点,连接、.
(1)求证:;
(2)求证:四边形是菱形.
(3)当满足什么条件时,四边形是正方形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面内容,并解答问题:
杨辉和他的一个数学问题
我国古代对代数的研究,特别是对方程的解法研究有着优良的传统并取得了重要成果.
杨辉,字谦光,钱塘(今浙江杭州)人,南宋杰出的数学家和数学教育家,杨辉一生留下了大量的著述,他著名的数学书共五种二十一卷,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田(杨辉,南宋数学家)亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》.下面是杨辉在1275年提出的一个问题(选自杨辉所著《田亩比类乘除捷法》):
直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.
请你用学过的知识解决这个问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数的图象经过原点,开口向上,对称轴为直线,对于下列两个结论:①m为任意实数,则有;②方程有两个不相等的实数根,一个根小于0,另一个根大于2,说法正确的是( )
A.①对,②错B.①错,②对C.①②都对D.①②都错
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com