精英家教网 > 初中数学 > 题目详情
如图,已知 AB∥DC,E是BC的中点,AE,DC的延长线交于点F;
(1)求证:△ABE≌△FCE;
(2)连接AC,BF.则四边形ABFC是什么特殊的四边形?请说明理由.
分析:(1)根据平行线性质求出∠1=∠2,∠FCE=∠EBA,根据AAS推出两三角形全等即可;
(2)根据三角形全等推出EF=AE,根据平行四边形的判定定理推出即可.
解答:(1)证明:∵AB∥DC,
∴∠1=∠2,∠FCE=∠EBA,
∵E为BC中点,
∴CE=BE,
∵在△ABE和△FCE中,∠1=∠2,∠FCE=∠EBA,CE=BE,
∴△ABE≌△FCE;
                 
(2)四边形ABFC是平行四边形;           
理由:由(1)知:△ABE≌△FCE,
∴EF=AE,
∵CE=BE,
∴四边形ABFC是平行四边形.
点评:本题考查了平行四边形的判定和全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较典型,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知AB=AC,∠1=∠2,∠3=∠F,试判断EC与DF是否平行,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(保留作图痕迹)如图,已知AB=DC.
(1)画出线段AB平移后的线段DE,其平移方向为射线AD的方向,平移的距离为线段AD的长;
(2)连接CE,并指出∠DEC与∠DCE之间的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB=4,BC=12,CD=13,DA=3,AB⊥AD.判断BC⊥BD吗?简述你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知AB∥DE,点C是AE的中点,
求证:△ABC≌△EDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB、CD交于点O,且点O是AB的中点,AC∥BD,请说明点O是CD的中点的理由.

查看答案和解析>>

同步练习册答案