精英家教网 > 初中数学 > 题目详情

阅读材料:

已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.

解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0.又∵pq≠1,∴p≠,∴1-q-q2=0,可变形为()2-()-1=0,

根据p2-p-1=0和()2-()-1=0的特征,所以p与是方程x2-x-1=0的两个不相等的实数根,则p+=1,∴=1.

根据阅读材料所提供的方法,完成下面解答:已知:2m2-5m-1=0,-2=0且m≠n,求的值.

答案:
解析:

  解答:由2m2-5m-1=0,知m≠0,∴-2=0,∵m≠n,∴,根据-2=0与-2=0的特征,∴是方程x2+5x-2=0的两个不相等的实数根,∴=-5.


提示:

  名师导引:本题首先要求学生阅读的规范解法,总结归纳运用方程根的定义构造一元二次方程,再根据根与系数的关系求代数式的值.

  探究点:根据例题进行信息迁移,把化为一个一元二次方程的两根.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:
已知p2-p-1=0,1-q-q2=0,且pq≠1,求
pq+1
q
的值.
解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0.
又∵pq≠1,∴p≠
1
q

∴1-q-q2=0可变形为(
1
q
)2-(
1
q
)-1=0
的特征.
所以p与
1
q
是方程x2-x-1=0的两个不相等的实数根.
p+
1
q
=1
,∴
pq+1
q
=1

根据阅读材料所提供的方法,完成下面的解答.
已知:2m2-5m-1=0,
1
n2
+
5
n
-2=0
,且m≠n.求:
1
m
+
1
n
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:已知p2-p-1=0 , 1-q-q2=0, 且pq≠1 ,求的值.

解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,

又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:(2-()-1=0 ,

根据p2-p-1=0和(2-()-1=0的特征,

p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+=1,  所以=1.

根据以上阅读材料所提供的方法,完成下面的解答:

1.已知m2-5mn+6n2=0,m>n,求的值

2.已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值.
解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,
又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:(2-()-1=0 ,
根据p2-p-1=0和(2-()-1=0的特征,
p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+=1, 所以=1.
根据以上阅读材料所提供的方法,完成下面的解答:
【小题1】已知m2-5mn+6n2=0,m>n,求的值
【小题2】已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东珠海紫荆中学一模数学试卷(带解析) 题型:解答题

阅读材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值.
解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,
又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:(2-()-1=0 ,
根据p2-p-1=0和(2-()-1=0的特征,
p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+=1, 所以=1.
根据以上阅读材料所提供的方法,完成下面的解答:
【小题1】已知m2-5mn+6n2=0,m>n,求的值
【小题2】已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东珠海紫荆中学一模数学试卷(解析版) 题型:解答题

阅读材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值.

解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,

又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:(2-()-1=0 ,

根据p2-p-1=0和(2-()-1=0的特征,

p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+=1,  所以=1.

根据以上阅读材料所提供的方法,完成下面的解答:

1.已知m2-5mn+6n2=0,m>n,求的值

2.已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

 

查看答案和解析>>

同步练习册答案