精英家教网 > 初中数学 > 题目详情
当x
x>2
x>2
时,
-3
2-x
有意义;在
-x
|x|-2
中x的取值范围是
x≤0且x≠-2
x≤0且x≠-2
分析:分式有意义,分母不为零;二次根式的被开方数是非负数.
解答:解:当
-3
2-x
≥0且2-x≠0,即x>2时,
-3
2-x
有意义;
当-x≥0且|x|-2≠0,即x≤0且x≠-2时,
-x
|x|-2
有意义.
故答案是:x>2;x≤0且x≠-2.
点评:本题考查了分式有意义的条件、二次根式有意义的条件.二次根式中的被开方数必须是非负数,否则二次根式无意义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

当a取何值时,方程
x-1
x-2
-
2-x
x+1
=
2x+a
x2-x-2
有负数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=-x2+2x+1,当x
x<1
x<1
时,y随x的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=x2+4x+3的图象开口向
,当x
x>-2
x>-2
时,y的值随着x的值增大而增大;当x
<-2
<-2
时,y的值随着x的值增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)当x
x>3
x>3
时,分式
1
x-3
的值为正;
(2)当x
x<-2
x<-2
时,分式
2+x
x2+1
的值为负;
(3)若分式
x-1
x-3
的值为负数,则x的取值范围是
1<x<3
1<x<3

查看答案和解析>>

同步练习册答案