【题目】已知抛物线与轴交于,两点,与轴交于点.
(1)填空: , .
(2)如图1,已知,过点的直线与抛物线交于点、,且点、关于点对称,求直线的解析式.
(3)如图2,已知,是第一象限内抛物线上一点,作轴于点,若与相似,请求出点的横坐标.
【答案】(1),;(2)直线;(3)点的横坐标为或
【解析】
(1)把,代入解析式即可求出a,b的值;
(2)设直线MN为y=kx-,根据二次函数联立得到一元二次方程,设交点、的横坐标为x1,x2,根据对称性可得x1+x2=5,根据根与系数的关系求解k,即可求解.
(3)求出OD,OB,设P(x,),得到HP=x,DH=-1=,根据与相似分两种情况列出比例式即可求解.
(1)把,代入
得解得
故答案为:-4;3;
(2)设直线MN为y=kx+b,把代入得b=-
∴直线MN为y=kx-,
联立二次函数得kx-=
整理得x2-(k+4)x++3=0
设交点、的横坐标为x1,x2,
∵点、关于点对称,
∴x1+x2=5
故k+4=5
解得k=1
∴直线;
(3)∵D(0,1),B(3,0)
∴OD=1,OB=3,
设P(x,),
则HP=x,DH=-1=,
当∽时,,即
解得x=
当∽时,,即
解得x=
∴点的横坐标为或.
科目:初中数学 来源: 题型:
【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)
(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在全校的科技制作大赛中,王浩同学用木板制作了一个带有卡槽的三角形手机架.如图所示,卡槽的宽度DF与内三角形ABC的AB边长相等.已知AC=20cm,BC=18cm,∠ACB=50°,一块手机的最长边为17cm,王浩同学能否将此手机立放入卡槽内?请说明你的理由(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为 ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为 度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有 人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱上的线段重合,长为0.2米,当踏板连杆绕着点旋转到处时,测得,此时点距离地面的高度为0.44米.求:
(1)踏板连杆的长.
(2)此时点到立柱的距离.(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为,且抛物线与直线相交于两点,且点在轴上,点的坐标为,连接.
(1) , , (直接写出结果);
(2)当时,则的取值范围为 (直接写出结果);
(3)在直线下方的抛物线上是否存在一点,使得的面积最大?若存在,求出的最大面积及点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中如图:
(1)画出将△ABC绕点O逆时针旋转90°所得到的,并写出点的坐标.
(2)画出将△ABC关于x轴对称的,并写出点的坐标.
(3)求在旋转过程中线段OA扫过的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 人,条形统计图中的值为 ;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为 ;
(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com