【题目】已知A,B两地相距1 km.要在A,B两地之间修建一条笔直的水渠(即图中的线段AB),经测量在A地的北偏东60°方向,B地的北偏西45°方向的C处有一个以C为圆心,350 m为半径的圆形公园,则修建的这条水渠会不会穿过公园?为什么?
科目:初中数学 来源: 题型:
【题目】在△OAB中,OA=OB,OA⊥OB.在△OCD中,OC=OD,OC⊥OD.
(1)如图1,若A,O,D三点在同一条直线上,求证:S△AOC=S△BOD;
(2)如图2,若A,O,D三点不在同一条直线上,△OAB和△OCD不重叠.则S△AOC=S△BOD是否仍成立?若成立,请予以证明;若不成立,也请说明理由.
(3)若A,O,D三点不在同一条直线上,△OAB和△OCD有部分重叠,经过画图猜想,请直接写出 S△AOC和S△BOD的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为R,弦AB,CD互相垂直,连接AD,BC.
(1)求证:AD2+BC2=4R2;
(2)若弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),求⊙O的半径及点O到AD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60°.
(1)求∠AOC的度数;
(2)如图,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-4,0),B(2,0),与y轴交于点C(0,2).
(1)求抛物线对应的函数表达式;
(2)以AB为直径作⊙M,一直线经过点E(-1,-5),并且与⊙M相切,求该直线对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对一批西装质量抽检情况如下表:
(1)从这批西装中任选一套,是次品的概率是多少?
(2)若要销售这批西装2000件,为了方便购买了次品西装的顾客前来调换,至少应进多少件西装?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com