精英家教网 > 初中数学 > 题目详情

【题目】如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为

A.3 B.2 C.3 D.2

【答案】B.

【解析】

试题建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),

设顶点式y=ax2+2,代入A点坐标(-2,0),

得出:a=-0.5,

所以抛物线解析式为y=-0.5x2+2,

当水面下降1米,通过抛物线在图上的观察可转化为:

当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,

可以通过把y=-1代入抛物线解析式得出:

-1=-0.5x2+2,

解得:x=±

所以水面宽度增加到2米,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数与反比例函数交于点

(1)分别求出反比例函数和一次函数的表达式;

(2)根据函数图象,直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点FFG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正确的结论的个数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有(   )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y与投资量x成正比例关系,如图1所示:种植花卉的利润y与投资量x成二次函数关系,如图2所示(注:利润与投资量的单位:万元)

(1)分别求出利润y1与y2关于投资量x的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

(3)在(2)的基础上要保证获利在22万元以上,该园林专业户应怎样投资?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦AC=2,ABC=30°,ACB的平分线交⊙O于点D,求:

(1)BC、AD的长;

(2)图中两阴影部分面积的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交干E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b= _____时,ACE、BDFABO面积的和等于EFO面积的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018如果点A的坐标为(,0),那么点B2018的坐标为( )

A. (1,1) B. (0,) C. (﹣1,1) D. (-,0)

查看答案和解析>>

同步练习册答案