精英家教网 > 初中数学 > 题目详情
精英家教网如图,点C在线段AB上,以AB、AC为直径的半圆相切于点A,大圆的弦AE交小圆于点D,∠EAB=α,如DE=2,那么BC等于(  )
A、2cosα
B、2sinα
C、
2
cosα
D、
2
sinα
分析:连接CD和BE,并过C点作CF∥DE交BE于F,因为点C在线段AB上,AB、AC为直径,可证,CD∥BE,∠AEB=∠ADC=90°,故有CF=DE=2,∠FCB=∠EAB=α,根据三角函数关系,可得BC=
2
cosα
解答:精英家教网解:连接CD、BE,过C点作CF∥AE交BE于点F,
点C在线段AB上,AB、AC为直径,
所以有DC⊥AE,BE⊥AE,
即得CD∥BE,且四边形DCFE为正方形,
即FC=DE=2,∠FCB=∠EAB=α,
在Rt△BCF中,BC=
2
cosα

故选C.
点评:本题主要考查了直径所对的圆周角为直角的知识,利用三角函数关系式求解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.精英家教网
(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C在线段AB上,点M、N分别是AC、BC的中点.精英家教网
(1)若AC=9cm,CB=6cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?
(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.精英家教网
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图,点C在线段AB上,AC=18cm,BC=6cm,点M、N分别是AC、BC的中点,求MN的长;
(2)把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,则MN的长是多少?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M在线段AB上,MB=4cm,NB=9cm,且N是AM的中点,则AB=
14
14
cm.

查看答案和解析>>

同步练习册答案