精英家教网 > 初中数学 > 题目详情

如图,若CD⊥BF,且∠G+∠GBF=.你能否说明CD∥GE?为什么?

答案:
解析:

  证明:∵∠G+∠GBF=

  ∴BF⊥FG,

  又∵CD⊥BF

  ∴CD∥EG.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=80°,则∠BFD=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形的内切圆
(1)定义:与三角形各边都
相切
相切
的圆叫做三角形的内切圆.内切圆的圆心叫三角形的
内心
内心

(2)三角形的内心是三角形
三角平分线
三角平分线
的交点,它到三角形
三边
三边
的距离相等,都等于该三角形
内切圆的半径
内切圆的半径

(3)如图,若△ABC的三边分别为AB=c,BC=a,AC=b,其内切圆⊙O分别切BC、CA、AB于D、E、F.则AF=AE=
b+c-a
2
b+c-a
2
,BD=BF=
c+b-a
2
c+b-a
2
,CD=CE=
a+b-c
2
a+b-c
2
.∠BOC与∠A的关系是
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,∠EDF与∠A的关系是
∠EDF=90°-
1
2
∠A
∠EDF=90°-
1
2
∠A
△ABC的面积S与内切圆半径r的关系是
r=
2s
a+b+c
r=
2s
a+b+c

(4)直角三角形的外接圆半径等于
斜边长的一半
斜边长的一半
,内切圆半径等于
面积的2倍与周长的商
面积的2倍与周长的商

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•福鼎市模拟)在△ABC中,P是BA延长线上一点,AE是∠CAP的平分线,CE⊥AE于E,BD⊥EA延长线于D.
(1)若四边形BCED是正方形(如图①),AB、AC分别于CD、BE相交于点M、N,求证:△ADM≌△AEN.
(2)如图②,若AD=kAE,BE、CD相交于F.试探究EF、BF之间的数量关系,并说明理由.(用含k的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1:四边形ABCD中,AB=CD,AD=BC,试回答下列问题:
(1)说明:∠A=∠C;
(2)如图2若E、F分别在AB、CD上且AE=CF,请你以F为一个端点,和图中已标明字母的某点连接成一条新段,猜想并说明它与图中哪条已知线段相等(只需说明一组)
①我连接
BF
BF
,并猜想
DE
DE
=
BF
BF

②理由:
(3)若E、F分别在AB、CD上且DE=BF,此时AE=CF成立吗?若成立,说明理由,若不成立,也说明理由或画出示意图.

查看答案和解析>>

同步练习册答案