精英家教网 > 初中数学 > 题目详情
13、求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.
分析:根据已知条件先求证△CDB≌△C′D′B′得出∠B=∠B′,再利用ASA即可证明Rt△ABC≌Rt△A'B'C'.
解答:解:已知:如图在Rt△ABC和Rt△A'B'C'中,∠ACB=∠A'C'B'=90°,
CD⊥AB于D,C'D'⊥A'B'于D',
BC=B'C',CD=C'D',
求证:Rt△ABC≌Rt△A'B'C'.
证明:
∵CD⊥AB于D,C'D'⊥A'B'于D',
∴∠CDB=∠C′D′B′=90°
又∵BC=B'C',CD=C'D',
∴△CDB≌△C′D′B′
∴∠B=∠B′.
在Rt△ABC和Rt△A'B'C'中,
∠ACB=∠A'C'B'=90°,BC=B'C',∠B=∠B′
∴Rt△ABC≌Rt△A'B'C'.
点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,证明此题的关键是先证△CDB≌△C′D′B′,利用∠B=∠B′,然后利用ASA即可证明Rt△ABC≌Rt△A'B'C'.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.

查看答案和解析>>

同步练习册答案