精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是边长为4的等边三角形,AB在x轴上,点C在第一象限,AC交y轴于点D,点A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DEAB交经过B、C、D三点的抛物线于点E,求DE的长.
(1)OB=AB-OA=4-1=3,则B的坐标是(3,0);
C点的横坐标是:
1
2
(-1+3)=1,三角形的高是:4×
3
2
=2
3

则C的坐标是:(1,2
3
);
设直线AC的解析式是:y=kx+b,根据题意得:
-k+b=0
k+b=2
3

解得:
k=
3
b=
3

则直线的解析式是:y=
3
x+
3

令x=0,解得:y=
3

则D的坐标是:(0,
3
);

(2)根据题意得:
9a+3b+c=0
a+b+c=2
3
c=
3

解得:
a=-
2
3
3
b=
5
3
3
c=
3

则函数的解析式是:y=-
2
3
3
x2+
5
3
3
x+
3


(3)在:y=-
2
3
3
x2+
5
3
3
x+
3
中,令y=
3

得到-
2
3
3
x2+
5
3
3
x+
3
=
3

解得:x=0或
5
2

故DE=
5
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②
BF
AF
=
BG
AG
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PEx轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少时,每日获得的利润为1750元?
(2)当日产量为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-
3
交x轴于A(-3,0)、B(1,0)两点,交y轴于点C,点D在抛物线上,且CDAB,对称轴直线l交x轴于点M,连结CM,将∠CMB绕点M旋转,旋转后的两边分别交直线BC、直线CD于点E、F.
(1)求抛物线的解析式;
(2)当点E为BC中点时,射线MF与抛物线的交点坐标是______;
(3)若ME=
13
CF,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在综合实践课上,小明要用如图所示的矩形硬纸板做一个装垃圾的无盖纸盒.已知这张矩形硬纸板ABCD边AB的长是40cm,边AD的长是20cm,裁去角上四个小正方形之后,就可以折成一个无盖纸盒.设这个无盖纸盒的底面矩形EFMN的面积是y(单位:cm2),纸盒的高是x(单位:cm).
(1)求出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据老师要求,小明做的无盖纸盒的高x不能超过宽EF且纸盒的底面矩形EFMN的面积y等于300cm2,求纸盒高的最大整数值x是多少cm?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.
(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?
(2)如果墙AB=8m,那么又要如何设计可使矩形花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物线上位于A,C两点之间的一个动点,则△PAC的面积的最大值为(  )
A.
27
4
B.
11
2
C.
27
8
D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场将每件进价为60元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加20件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润7000元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于7000元.

查看答案和解析>>

同步练习册答案