精英家教网 > 初中数学 > 题目详情
8.为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)
(1)将统计图补充完整
(2)求出该班学生人数
(3)若该校共用学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率

分析 (1)、(2)先利用B的人数和所占的百分比计算出全班人数,再利用C、E的百分比计算出C、E的人数,则用全班人数分别减去B、C、D、E的人数得到A的人数,然后计算A、D所占百分比;
(3)根据样本估计总体,用40%表示全校学生对足球感兴趣的百分比,然后用3500乘以40%即可得到选修足球的人数;
(4)先利用树状图展示所有20种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.

解答 解:(1)∵该班人数为8÷16%=50(人),
∴C的人数=24%×50=12(人),E的人数=8%×50=4(人),
∴A的人数=50-8-12-4-6=20(人),
A所占的百分比=$\frac{20}{50}$×100%=40%,D所占的百分比=$\frac{6}{50}$×100%=12%,
如图,

(2)由(1)得该班学生人数为50人;
(3)3500×40%=1400(人),
估计有1400人选修足球;
(4)画树状图:

共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种,
所以选出的2人恰好1人选修篮球,1人选修足球的概率=$\frac{6}{20}$=$\frac{3}{10}$.

点评 本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.直角坐标系中,点A在x轴上,点B在y轴上,∠BAO=60°,AC平分∠BAO交y轴于点C,若AC=8.

(1)求点B的坐标.
(2)动点P从A出发,以每秒2个单位长度的速度沿着射线AC运动,过P作PH⊥y轴,垂足为H.设运动时间为t秒,用含t的关系式表示线段CH的长,并写出t的取值范围.
(3)在(2)的条件下,当OH=2CH时,求出t的值.此时在第一象限内是否存在一点M,使△CHM是等腰直角三角形.如果存在,请直接写出M的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.图中所示几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)化简$\frac{\sqrt{6}+4\sqrt{3}+3\sqrt{2}}{(\sqrt{6}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$.
(2)设a=$\frac{16}{\sqrt{17}+1}$,求a5+2a4-17a3-a2+18a-17的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.到去年年底,全国的共产党员人数已超过80300000,这个数用科学记数法可表示为8.03×107

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3 (8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是(16,3);
(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测:An的坐标是(2n,3);Bn的坐标是(2n+1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从点C沿抛物线向A点运动(运动到A点停止),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求对称轴上一点M的坐标,使MC+MD最短;
(3)点P在运动过程中,△APD 能否与△AOC相似?若能,求出点P的坐标,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在直角坐标系中,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{13}{5}$)B.(-$\frac{2}{5}$,$\frac{13}{5}$)C.(-$\frac{4}{5}$,$\frac{12}{5}$)D.(-$\frac{3}{5}$,$\frac{12}{5}$)

查看答案和解析>>

同步练习册答案