精英家教网 > 初中数学 > 题目详情
(2013•乐清市模拟)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.
分析:(1)由四边形ABCD是矩形与折叠的性质,易证得△AOE≌△COF,即可得AE=CF,则可证得四边形AFCE是平行四边形,又由AC⊥EF,则可证得四边形AFCE是菱形;
(2)由已知可得:S△ABF=
1
2
AB•BF=24cm2,则可得AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),则可求得AB+BF的值,继而求得△ABF的周长.
解答:解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
由折叠的性质可得:OA=OC,AC⊥EF,
在△AOE和△COF中,
∠EAO=∠FCO
OA=OC
∠AOE=∠COF

∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形,
∵AC⊥EF,
∴四边形AFCE是菱形;

(2)∵四边形AFCE是菱形,
∴AF=AE=10cm,
∵四边形ABCD是矩形,
∴∠B=90°,
∴S△ABF=
1
2
AB•BF=24cm2
∴AB•BF=48(cm2),
∴AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),
∴AB+BF=14(cm)
∴△ABF的周长为:AB+BF+AF=14+10=24(cm).
点评:此题考查了折叠的性质、矩形的性质、菱形的判定与性质以及勾股定理等知识.此题难度较大,注意折叠中的对应关系,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•乐清市模拟)某校开展大课间活动,某班同学积极响应,某班同学参加大课间活动项目情况的扇形统计图该班同学参加体育项目情况的扇形统计图如图所示,由图可知参加人数最多的活动是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乐清市模拟)如图,点D在△ABC的边BC上,过点D作DF∥AB,交AC于点E,连结BF,已知BD:DC=1:2,DE:EF=1:3,则S△ABC:S△BDF=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乐清市模拟)如图,在四边形ABCD中,AD∥BC,AD⊥AB,AB=BC=5,AD=1,E是AB所在直线上的一个动点,当
AE=
9或
4
5
5+
5
2
5-
5
2
9或
4
5
5+
5
2
5-
5
2
时,△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乐清市模拟)在一个不透明的口袋里装有分别标有数字1,2,3三个小球,除数字不同外,其他没有任何区别,每次实验先搅拌均匀.
(1)求从袋中 摸出1个球上的数字为2的概率;
(2)若从中任取一球(不放回),再从中任取一球,请求出两个球上的数字之和为偶数的概率(用画树状图或列表格的方法)
(3)若按小题(2)摸球方式设计如下游戏:摸出的两个球上的数字之和为偶数则甲胜,否则乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•乐清市模拟)如图,在△ABC中,点O在AB边上,以O为圆心的圆经过A,C两点,交AB于点D,且2∠A+∠B=90°,
(1)求证:BC是⊙O的切线.
(2)若OA=6,且OD=BD,求AC的长.

查看答案和解析>>

同步练习册答案