精英家教网 > 初中数学 > 题目详情

【题目】某公司生产两种设备,已知每台种设备的成本是种设备的15倍,公司若投入6万元生产种设备,投人15万元生产种设备,则可生产两种设备共40台.请解答下列问题:

1两种设备每台的成本分别是多少万元?

2)若两种设备每台的售价分别是5000元、9000元,公司决定生产两种设备共50台,且其中种设备至少生产10台,计划销售后获利不低于12万元,请问采用哪种生产方案公司所获利润最大?并求出最大利润.

【答案】(1)种设备每台的成本是0.4万元,种设备每台的成本是0.6万元;(2)公司生产10种设备,40种设备时所获利润最大,最大利润为130000元.

【解析】

1)设A种设备每台的成本是x万元,B种设备每台的成本是1.5x万元.根据“数量=总价÷单价”结合“投入投入1.5万元生产A种设备,3.75万元生产B种设备,则可生产两种设备共10台”,即可得出关于x的分式方程,解之经检验后即可得出结论;

2)设公司获得利润为W元,A种设备生产a台,则B种设备生产(50a)台.根据销售后获利不低于12万元且A种设备至少生产10台,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,根据题意得出Wa的函数关系式,再根据一次函数的性质解答即可.

解:(1)设种设备每台的成本是万元,则种设备每台的成本是万元.

根据题意,得

解得

经检验是分式方程的解,

答:种设备每台的成本是04万元,种设备每台的成本是06万元.

2)设公司获得的利润为元,生产种设备台,则生产种设备台.

根根据题意,得

解得

,即

的增大而减小,

时,所获利润最大,最大利润为(元).

答:公司生产10种设备,40种设备时所获利润最大,最大利润为130000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AB8cmBC长为10cm.当小莹折叠时,顶点D落在BC边上的点F(折痕为AE).则此时EC=(  )cm

A.4B.C.D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CBy,y轴负半轴于B(0,b),(a-3)2+|b+4|=0,S四边形AOBC=16.

(1)求C点坐标;

(2)如图2,D为线段OB上一动点,ADAC,ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.

(3)如图3,D点在线段OB上运动时,DMADBCM,BMD、DAO的平分线交于N,D点在运动过程中,N的大小是否变化?若不变,求出其值,若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点 A﹣20),B20),C02,点 D,点E分别是 ACBC的中点,将CDE绕点C逆时针旋转得到CDE,及旋转角为α,连接 ADBE

1如图,若 α90°,当 AD′∥CE时,求α的大小;

2如图,若 90°α180°,当点 D落在线段 BE上时,求 sin∠CBE的值;

3若直线AD与直线BE相交于点P,求点P的横坐标m的取值范围直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6AB=4,点EGHF分别在ABBCCDAD上,且AF=CG=2BE=DH=1,点P是直线EFGH之间任意一点,连接PEPFPGPH,则图中阴影面积(PEFPGH的面积和)等于(  )

A. 7 B. 8 C. 12 D. 14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.

1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?

3)已知每个地上停车位月租金100元,每个地下停车位月租金300. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=60°CE为△ABC的角平分线,AC边上的高BDCE所在的直线交于点F,若∠ABD:ACF=2:3,则∠BEC的度数为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,BCD=60°,点E是AB上一点,AE=3EB,P过D,O,C三点,抛物线过点D,B,C三点

(1)求抛物线的解析式;

(2)求证:ED是P的切线;

(3)若将ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线上吗?请说明理由;

(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展了“手机伴我行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成图①、图②不完整的统计图,已知问卷调查中“查资料”的人数是40人,条形统计图中“01表示每周使用手机的时间大于0小时而小于或等于1小时,以此类推.

1)本次问卷调查一共调查了多少名学生?

2)补全条形统计图;

3)该校共有学生1200人,估计每周使用手机“玩游戏”是多少名学生?

查看答案和解析>>

同步练习册答案