精英家教网 > 初中数学 > 题目详情
精英家教网如图,矩形ABCD中,AB=6cm,BC=8cm,将矩形沿着BD方向移动,设BB′=x.
(1)当x为多少时,才能使平移后的矩形与原矩形重叠部分的面积为24cm2
(2)依次连接A′A,AC,CC′,C′A′,四边形ACC′A′可能是菱形吗?若可能,求出x的值;若不可能,请说明理由.
分析:(1)要使三角形B′ED的面积为24,可先用x表示出B′E,ED,然后根据三角形的面积公式列出关于x的方程,从而得出x的值,那么用x表示出B′E,ED是解题的关键,这点可以用三角形ABD和EB′D相似得出的线段间的比例来求得;
(2)根据矩形A′B′C′D′是有矩形ABCD平移后得出的,因此AA′CC′是个平行四边形,要想使AA′CC′成为菱形,那么AA′=AC,也就是说,平移的距离应该等于AC的长,AC是矩形ABCD的对角线,AB=6,BC=8,那么AC=10,因此当BB′=10时,ACC′A′是菱形.
解答:精英家教网解:(1)∵B′E∥AB,
∴△DB′E∽△DBA.
B′E
6
=
10-x
10

∴B′E=
3
5
(10-x).
同理:B′F=
4
5
(10-x).
3
5
(10-x)•
4
5
(10-x)=24.
解得x=10±5
2

∵x=10+5
2
>10,不符合题意,舍去,
∴x=10-5
2
时,重叠部分的面积为24cm2

(2)四边形A′ACC′可能是菱形.
∵矩形ABCD沿BD平移后矩形A′B′C′D′,
∴AA′∥CC′,且AA′=CC′.
∴四边形A′ACC′是平行四边形.
∵AB∥A′B′,AB=A′B′,
∴四边形ABB′A′是平行四边形.
∴BB′=AA′.
∴当BB′=10时,AA′=AC=10,此时四边形A′ACC′是菱形.
点评:本题主要考查了平移的性质,菱形的判定等知识点,本题中利用平移的性质得出线段的平行或相等关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案