精英家教网 > 初中数学 > 题目详情
5.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F.将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N,有下列四个结论:
①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF
其中,正确的结论有(  )
A.1个B.2个C.3个D.4个

分析 由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;易求得∠BFE=∠BFN,则可得BF⊥EN;易证得△BEN是等腰三角形,但无法判定是等边三角形;易求得BM=2EM=2DE,即可得EB=3EM,根据等高三角形的面积比等于对应底的比,故正确的结论有3个.

解答 解:∵四边形ABCD是矩形,
∴∠D=∠BCD=90°,DF=MF,
由折叠的性质可得:∠EMF=∠D=90°,
即FM⊥BE,CF⊥BC,
∵BF平分∠EBC,
∴CF=MF,
∴DF=CF;故①正确;
∵∠BFM=90°-∠EBF,∠BFC=90°-∠CBF,
∴∠BFM=∠BFC,
∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN,
∵∠BFE+∠BFN=180°,
∴∠BFE=90°,
即BF⊥EN,故②正确;
∵在△DEF和△CNF中,
$\left\{\begin{array}{l}{∠D=∠FCN=90°}\\{DF=CF}\\{∠DFE=∠CFN}\end{array}\right.$,
∴△DEF≌△CNF(ASA),
∴EF=FN,
∴BE=BN,
但无法求得△BEN各角的度数,
∴△BEN不一定是等边三角形;故③错误;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,
∴BM=BC=AD=2DE=2EM,
∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF
故④正确.
故选:C.

点评 此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是(  )
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:
工种人数每人每月工资/元
电工57000
木工46000
瓦工55000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差变大(填“变小”、“不变”或“变大”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:$\frac{1-x}{x-2}$=$\frac{x}{2x-4}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,且m≠n,则$\frac{n}{m}$$+\frac{m}{n}$=-$\frac{22}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD、BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②当CH=CB时,EC平分∠DCH;③当点H与点A重台时,BF=3;④当点H是AD中点时,EF=4$\sqrt{3}$,其中正确的结论有①②③(填写所有正确的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图所示,在矩形ABC中,AB=4,AD=4$\sqrt{2}$,E是线段AB的中点,F是线段BC上的动点,△BEF沿直线EF翻折到△B′EF,连结DB′,B′C.当DB′最短时,则sin∠B′CF=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,一个三角形三边长为6,8,10,现将△ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长是$\frac{7}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为20.

查看答案和解析>>

同步练习册答案