精英家教网 > 初中数学 > 题目详情
20.如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),
(1)当线段AB所在的直线与圆O相切时,求弧AQ的长(图1);
(2)若∠AOB=120°,求AB的长(图2);
(3)如果线段AB与圆O有两个公共点A、M,当AO⊥PM于点N时,求tan∠MPQ的值(图3).

分析 (1)根据直角三角形的性质求出∠B的度数,得到∠AOB的度数,再根据弧长的计算公式进行求解即可;
(2)连接AP,过点A作AM⊥BP于M,根据特殊角的三角函数值和已知条件求出AM,再根据BM=OM+OB,求出BM,最后根据勾股定理求出AB;
(3)连接MQ,根据PQ是圆O的直径和AO⊥PM,得出ON∥MQ,求出ON=$\frac{1}{4}$AO,设ON=x,则AO=4x,根据OA的值求出x的值,再根据PN=$\sqrt{P{O}^{2}-O{N}^{2}}$,求出PN,最后根据特殊角的三角函数值即可得出答案.

解答 解:(1)∵直线AB与圆O相切,
∴∠OAB=90°,
∵OQ=QB=1,
∴OA=1,OB=2,
∴OA=$\frac{1}{2}$OB,
∴∠B=30°,
∴∠AOB=60°,
∴AQ=$\frac{60π×1}{180}$=$\frac{π}{3}$;

(2)如图1,
连接AP,过点A作AM⊥BP于M,
∵∠AOB=120°,
∴∠AOP=60°,
∵sin∠AOP=$\frac{AM}{AO}$,
∴AM=sin∠AOP•AO=sin60°×1=$\frac{\sqrt{3}}{2}$,
∵OM=$\frac{1}{2}$,
∴BM=OM+OB=$\frac{1}{2}$+2=$\frac{5}{2}$,
∴AB=$\sqrt{A{M}^{2}+B{M}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{2})^{2}+(\frac{5}{2})^{2}}$=$\sqrt{7}$;

(3)如图2,连接MQ,
∵PQ为圆O的直径,
∴∠PMQ=90°,
∵ON⊥PM,
∴AO∥MQ,
∵PO=OQ,
∴ON=$\frac{1}{2}$MQ,
∵OQ=BQ,
∴MQ=$\frac{1}{2}$AO,
∴ON=$\frac{1}{4}$AO,
设ON=x,则AO=4x,
∵OA=1,
∴4x=1,
∴x=$\frac{1}{4}$,
∴ON=$\frac{1}{4}$,
∴PN=$\sqrt{P{O}^{2}-O{N}^{2}}$=$\sqrt{{1}^{2}-({\frac{1}{4})}^{2}}$=$\frac{\sqrt{15}}{4}$,
∴tan∠MPQ=$\frac{ON}{PN}$=$\frac{\frac{1}{4}}{\frac{\sqrt{15}}{4}}$=$\frac{{\sqrt{15}}}{15}$.

点评 本题考查了圆的综合题,用到的知识点是垂径定理、勾股定理、三角形中位线定理、弧长公式、特殊角的三角函数值,关键是根据题意作出辅助线,构造直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,A、E、F、B在同一条直线上,AC⊥CE于C,BD⊥DF于D,AE=BF,AC=BD,探究CF与DE的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)|-$\frac{2}{5}$|+(-$\frac{3}{7}$)+|-$\frac{3}{7}$|+(-0.4);
(2)12-(-18)+(-7)-15;
(3)[(-2$\frac{2}{3}$)+(-3$\frac{1}{3}$)]÷(-4)×(-4$\frac{1}{2}$);
(4)(-8)×(-3)-80÷(-16)
(5)2×(-3)3-4×(-3)+15;
(6)(-1)3+[(-4)2-(1-3)2×2].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,EF与BD交于G,且∠DEF=60°,若AD=3,AE=2,则sin∠BEF=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在三角形ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则EB的长是(  )
A.3cmB.4cmC.5cmD.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图形中,不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若a>3,则$\sqrt{{a}^{2}-4a+4}$+$\sqrt{9-6a+{a}^{2}}$=(  )
A.1B.-1C.2a-5D.5-2a

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简:$({\frac{x+1}{x-1}+1})÷\frac{{{x^2}+x}}{{{x^2}-2x+1}}+\frac{2-2x}{{{x^2}-1}}$,然后从-2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如果关于x、y的方程组$\left\{\begin{array}{l}{y=ax-3}\\{y=3x-1}\end{array}\right.$无解,那么a=3.

查看答案和解析>>

同步练习册答案