精英家教网 > 初中数学 > 题目详情

【题目】如图,分别延长□ABCD的边CD,ABE,F,使DE=BF,连接EF,分别交AD,BCG,H,连结CG,AH.

求证:CG∥AH.

【答案】证明见解析

【解析】试题分析:根据已知条件易证△EGD≌△FHB,根据全等三角形的对应边相等证得DG=BH,从而得出AG=HC,根据一组对边平行且相等的四边形为平行四边形,即可判断出四边形AGCH是平行四边形继而证得结论.

试题解析:

ABCD中,

AB∥CD,AD∥CB ,AD=CB,

∴∠E=∠F,∠EDG=∠DCH=∠FBH .

DE=BF,

∴△EGD≌△FHB(AAS).

∴DG=BH ,

∴AG=HC,

∵AD∥CB,

四边形AGCH为平行四边形

∴AH∥CG .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,分别以ADBC为边向内作等边ADE和等边BCF,连接BEDF.求证:四边形BEDF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.

(1)求证:△ABG≌△AFG;(2)求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.

我选择第 个方程。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知小正方形 ABCD 的面积为1,把它的各边延长一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形 A n B n C n D n 的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.

证明:∵   

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.

证明:∵   

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,AOBC,DOOE.

(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);

(2)如果∠COE 350,求∠BOD的度数.

查看答案和解析>>

同步练习册答案