精英家教网 > 初中数学 > 题目详情

ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图)

(1)在图中画图探究:

①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90°得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;

②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90°得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.

(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,S△P1FC1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在?ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E按逆时针方向旋转90°得到线段EF.如图所示.
(1)在图中画图探究:
①当p1为线段CD延长线上任意一点时,连接.EP1,将线段EP1绕点E按逆时针方向旋转90°得到线段EG1判断直线FG1与直线CD的位置关系,并说明理由;(在图1中画)
②当P2为线段DC的延长线上任意一点时,连接EP2,将线EP2绕点E按逆时针方向旋转90°得到线段EG2.判断直线FG2与直线CD的位置关系,画出图形并直接写出你的结论.(在图2中画)
(2)在①的条件下,连接FP1、P1G1,若EP1=8,AD=6,AE=1,AB:CE=3:4,求△P1G1F的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF,点P为直线CD上一点(不与点C重合).
(1)在图1中画图探究:
当点P在CD延长线上时,连结EP并把EP绕点E逆时针旋转90°得到线段EQ.作直线QF交直线CD于H,求证:QF⊥CD.
(2)探究:结合(1)中的画图步骤,分析线段QH、PH与CE之间是否存在一种特定的数量关系?请在下面的空格中写出你的结论;若存在,直接填写这个关系式.
①当点P在CD延长线上且位于H点右边时,
QH-PH=2CE
QH-PH=2CE

②当点P在边CD上时,
QH+PH=2CE
QH+PH=2CE

(3)若AD=2AB=6,AE=1,连接DF,过P、F两点作⊙M,使⊙M同时与直线CD、DF相切,求⊙M的半径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

在?ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图①).
(1)在图①中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.
(1)试说明:△ABF∽△EAD;
(2)若AB=8,BE=6,AD=7,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,过点B的直线与对角线AC,边AD分别交于点E和点F,过点E作EG∥BC,交AB于G,则图中相似的三角形有
3
3
对.

查看答案和解析>>

同步练习册答案