精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCDABADC90°,以AB为直径的⊙OAD于点ECDED,连接BDO于点F

1求证:BCO相切;

2BD10AB13,求AE的长.

【答案】1见解析;(2)

【解析】分析:(1)连接BE,可证明Rt△BCD≌Rt△BED,结合条件可证明∠BDC=∠ABD,可证得AB∥CD,最后看单词结果;(2)连接EF,根据圆周角定理得出∠AFB=90°,在Rt△ABF中根据勾股定理得出BF=5,然后由Rt△ABF∽Rt△BDC,ED= ,从而求出AE的长.

详解1)证明:连接BE

AB是直径,

∴∠AEB90°

RtBCDRtBED

RtBCDRtBED

∴∠ADBBDC

ADAB

∴∠ADBABD

∴∠BDCABD

ABCD

∴∠ABC+∠C180°

∴∠ABC180°C180°―90°90°

BCAB

B在⊙O上,

BD与⊙O相切

2解:连接AF

AB是直径,

∴∠AFB90°,即AFBD

ADABBC10

BF5

RtABFRtBDC

RtABFRtBDC

DC

ED

AEADED13―

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法中:

①在RtABC中,∠C=90°,CDAB边上的中线,若CD=2,则AB=4;

②八边形的内角和度数为1080°;

2、3、4、3这组数据的方差为0.5;

④分式方程=的解为x=

⑤已知菱形的一个内角为60°,一条对角线为2,则另一对角线为2

正确的序号有(

A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图直线相交于点

1)图中与互余的角有 图中与互补的角有 (备注:写出所有符合条件的角)

2)根据下列条件,分别求的度数:①射线平分;②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:

请根据所给信息,解答下列问题:

(1)a=______,b=_______

(2)请补全频数分布直方图;

(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BCAB的夹角分别为45°68°,若点C到地面的距离CD28cm,坐垫中轴E处与点B的距离BE4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知,在轴上有一动点,当的周长最小时,则点的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.

(1)求这两个函数的解析式;

(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小烨在探究数轴上两点间距离时发现:若两点在轴上或与轴平行,两点的横坐标分别为,则两点间距离为两点在轴上或与轴平行,两点的纵坐标分别为,则两点间距离为.据此,小烨猜想:对于平面内任意两点两点间的距离为.

(1)请你利用下图,试证明:

(2)若,试在轴上求一点,使的距离最短,并求出的最小值和点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】母亲节期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 (单位:个)与销售单价 (单位:元/)之间的对应关系如图所示:

(1) 之间的函数关系是

(2)若许愿瓶的进价为6/个,按照上述市场调查的销售规律,求销售利润 (单位:元)与销售单价 (单位:元/)之间的函数关系式;

(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

查看答案和解析>>

同步练习册答案