【题目】把两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到C方向平移到三角形DEF的位置,AB=9,DH=3,平移距离为4,则阴影部分的面积是_____.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为( )
A. y=2x B. y=2x+1 C. y=2x+2﹣ D. y=2x﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆大巴车在一条南北方向的道路上来回运送旅客,某一天早晨该车从A地出发,晚上到达B地,预定向北为正方向,当天行驶记录如下(单位:千米)+18,-9,+7,-14,-6,+13,-6,-8 请你根据计算回答下列问题:
(1)B地在A地何方?相距多少千米?
(2)该车这一天共行驶多少千米?
(3)若该车每千米耗油0.5升,这一天共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂
直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=,BC=9,则DF等于( )
A. B. C. 4 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
若A,B,C为数轴上三点且点C在A,B之间,若点C到A的距离是点C到B的距离的3倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是(A,B)的好点;又如,表示-1的点D到A的距离是1,到B的距离是3,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.
知识运用:
(1)若M、N为数轴上两点,点M所表示的数为-6,点N所表示的数为2.
数 所表示的点是(M,N)的好点;
数 所表示的点是(N,M)的好点;
(2)若点A表示的数为a,点B表示的数为b,点B在点A的右边,且点B在A, C之间,点B是(C,A)的好点,求点C所表示的数(用含a、b的代数式表示);
(3)若A、B为数轴上两点,点A所表示的数为-33,点B所表示的数为27,现有一只电子蚂蚁P从点A出发,以每秒6个单位的速度向右运动,运动时间为t秒.如果P,A,B中恰有一个点为其余两点的好点,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.
(1)画出△ABC关于直线MN对称的△A1B1C1;
(2)直接写出AA1的长度;
(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人准备购买一套小户型住房,他去某楼盘了解情况得知,该户型单价是元/,总面积如图所示(单位:米,卫生间的宽未定,设宽为米),售房部为他提供了以下两种优惠方案: 方案一:需购买全部总面积,但整套房按原销售总金额的9折出售;
方案二:整套房的单价仍是12000元/,但不需要购买全部面积,其中,只对厨房面积进行了优惠,只算厨房的面积,其余房间面积不变.
(1)求卫生间的面积;
(2)请分别求出两种方案购买一套该户型商品房的总金额;
(3)当1≤≤2,且为整数时,选哪种方案购买一套该户型商品房的总金额较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com