精英家教网 > 初中数学 > 题目详情
已知正三角形外接圆半径为
3
,这个正三角形的边长是(  )
A、2B、3C、4D、5
分析:连接OA,并作OD⊥AB于D,可求得AD=OA•cos30°=
3
2
,则AB=3.
解答:解:连接OA,并作OD⊥AB于D,则:
∠OAD=30°,
OA=
3

∴OD=
3
2

∴AD=
OA2-OD2
=
3
2

∴AB=3.
故选B.
点评:此题主要考查由外接圆的半径求内接等边三角形的边长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OA精英家教网B为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)求B,C两点的坐标;
(2)求直线CD的函数解析式;
(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB精英家教网为正三角形.△OAB的外接圆交y轴的正半轴于点C.
(1)点B的坐标是
 
,点C的坐标是
 

(2)过点C的圆的切线交x轴于点D,则图中阴影部分的面积是
 

(3)若OH⊥AB于点H,点P在线段OH上.点Q在y轴的正半轴上,OQ=PH,PQ与OB交于点M.
①当△OPM为等腰三角形时,求点Q的坐标;
②探究线段OM长度的最大值是多少,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OA作业宝B为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)求B,C两点的坐标;
(2)求直线CD的函数解析式;
(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

  已知:如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D

1.(1)求BC两点的坐标;

2.(2)求直线CD的函数解析式;

3.(3)设EF分别是线段ABAD上的两个动点,且EF平分四边形ABCD的周长.

试探究:当点E运动到什么位置时,△AEF的面积最大?最大面积是多少?

 

 

查看答案和解析>>

科目:初中数学 来源:2012年广东省广州市聚贤暨四中中考数学一模试卷(解析版) 题型:解答题

如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)求B,C两点的坐标;
(2)求直线CD的函数解析式;
(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.

查看答案和解析>>

同步练习册答案