精英家教网 > 初中数学 > 题目详情

【题目】在学习了绝对值和有理数大小比较的知识后老师在黑板上(如图所示)布置了作业请完成.

【答案】(1)> > = =;(2)ab异号(ab<0);(3)-1.

【解析】

(1)①利用绝对值的性质去绝对值,进而比较大小;
②利用绝对值的性质去绝对值,进而比较大小;
③利用绝对值的性质去绝对值,进而比较大小;
④利用绝对值的性质去绝对值,进而比较大小;

(2)根据绝对值的性质结合,当a,b异号时,当a,b同号时分析得出答案;

(3)利用(2)中结论进而分析得出答案.

(1) |-2|+|6|=2+6=8,|-2+6|=4,

|-2|+|6|〉|-2+6|;

②∵|8|+|-4|=8+4=12,|8-4|=4,

|8|+|-4|>|8-4|;

③∵|-3|+|-1|=3+1=4,|-3-1|=4,

|-3|+|-1|=|-3-1|;

④∵|5|+|7|=5+7=12,|5+7|=12

|5|+|7|=|5+7|;

(2)根据(1)中的①②可得,当a、b是异号时,|a|+|b|>|a+b|;

(3)|x|+|10|>|x+10|

x10是异号

x是负数

∴x的最大整数值为-1.`

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以ECCF为邻边作平行四边形ECFG

(1)如图1,证明平行四边形ECFG为菱形;

(2)如图2,若∠ABC=90°,MEF的中点,求∠BDM的度数;

(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成不合格合格优秀三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:

(1)这32名学生培训前考分的中位数所在的等级是 ,培训后考分的中位数所在的等级是

(2)这32名学生经过培训,考分等级不合格 的百分比由 下降到

(3)估计该校整个八年级中,培训后考分等级为合格优秀的学生共有 名.

(4)你认为上述估计合理吗:理由是什么?

答: ,理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点Ax轴负半轴上一点,点Bx轴正半轴上一点,,其中ab满足关系式:

______,______,的面积为______;

如图2,石于点C,点P是线段OC上一点,连接BP,延长BPAC于点时,求证:BP平分提示:三角形三个内角和等于

如图3,若,点E是点A与点B之间上一点连接CE,且CB平分有什么数量关系?请写出它们之间的数量关系并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:

如图1ABC中,若AB=5AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使得DE=AD,再连接BE(或将ACD绕点D逆时针旋转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形的三边关系可得2AE8,则1AD4

感悟:解题时,条件中若出现中点”“中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC中,DBC边上的中点,DEDFDEAB于点EDFAC于点F,连接EF

①求证:BE+CFEF②若∠A=90°,探索线段BECFEF之间的等量关系,并加以证明;

2)问题拓展:如图3,在平行四边形ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上,联结EFCF,那么下列结论①∠DCF=BCDEF=CFSBEC=2SCEF④∠DFE=3AEF.中一定成立是 (填序号).

图1 图2 图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.

探究1:如图l,在ABC中,O是∠ABC与∠ACB的平分线BOCO的交点,通过分析发现∠BOC=90+A,理由如下:

BOCO分别是∠ABC和∠ACB的角平分线

∴∠1=ABC, 2=ACB

∴∠l+2=(ABC+ACB)= (180-A)= 90-A

∴∠BOC=180-(1+2) =180-(90-A)=90+A

(1)探究2;如图2中,OABC与外角ACD的平分线BOCO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BOCO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)

(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BOCO的交点,则∠BOC与∠A+D有怎样的关系?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1=2CFABDEAB,求证:FGBC.

证明:CFABDEAB 已知

∴∠BED=90°BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

同步练习册答案