精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.
(1)求证:该方程必有两个实数根;
(2)若该方程只有整数根,求k的整数值;
(3)在(2)的条件下,在平面直角坐标系中,若二次函数y=(k+1)x2+3x+m与x轴有两个不同的交点A和B(A在B左侧),并且满足OA=2•OB,求m的非负整数值.
(1)证明:△=b2-4ac=(3k+1)2-4k(2k+1),
=(k+1)2≥0,
∴该方程必有两个实数根;
(2)x=
-(3k+1)±
(k+1)2
2k
=
-(3k+1)±(k+1)
2k

x 1=
-(3k+1)+(k+1)
2k
=-1
,x 2=
-(3k+1)-(k+1)
2k
=-2-
1
k

∵方程只有整数根,
∴-2-
1
k
应为整数,即
1
k
应为整数,
∵k为整数,
∴k=±1;
(3)根据题意,k+1≠0,即k≠-1,
∴k=1,此时,二次函数为y=2x2+3x+m,
∵二次函数与x轴有两个不同的交点A和B(A在B左侧),
∴△=b2-4ac=32-4×2×m=9-8m>0,m<
9
8

∵m为非负整数
∴m=0,1,
当m=0时,二次函数为y=2x2+3x,此时A(-
3
2
,0),B(0,0)
不满足OA=2•OB,
当m=1时,二次函数为y=2x2+3x+1,此时A(-1,0),B(-
1
2
,0)
满足OA=2•OB.
∴m=1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案