分析 (1)观察已知等式得到拆项规律,写出即可;
(2)原式各项利用得出的拆项规律计算即可得到结果;
(3)原式利用拆项法变形,计算即可得到结果.
解答 解:(1)归纳总结得:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)①原式=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$=1-$\frac{1}{2015}$=$\frac{2014}{2015}$;
②原式=1--$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$;
(3)原式=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2015}$-$\frac{1}{2017}$)=$\frac{1}{2}$(1-$\frac{1}{2017}$)=$\frac{1008}{2017}$.
故答案为:(1)$\frac{1}{n}$-$\frac{1}{n+1}$;(2)①$\frac{2014}{2015}$;②$\frac{n}{n+1}$
点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 5 | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m2-m+$\frac{1}{4}$ | B. | a2+b2 | C. | a2-2ab-b2 | D. | -25+a2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com