精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是 . 随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是

【答案】( ,1);y= x﹣2
【解析】解:如图,过点C′作C′F⊥x轴于点F,
∵△AOC′是等边三角形,OA=2,
∴C′F=1.
在Rt△OC′F中,
由勾股定理,得OF= = =
∴点C′的坐标为( ,1).
∵△AOC′与△ABC都是等边三角形,
∴AO=AC′,AB=AC,∠BAC=∠OAC′=60°,
∴∠BAC﹣∠OAC=∠OAC′﹣∠OAC,
∴∠BAO=∠CAC′,
在△AOB与△AC′C中,

∴△AOB≌△AC′C(SAS).
∴∠BOA=∠CC′A=90°,
∴点C在过点C′且与AC垂直的直线上,
∵点A的坐标是(0,2),△ABC是等边三角形,
∴点C移动到y轴上的坐标是(0,﹣2),
设点C所在的直线方程为:y=kx+b(k≠0).把点( ,1)和(0,﹣2)分别代入,得
解得
所以点C移动所得图象的解析式是为:y= x﹣2.
所以答案是( ,1),y= x﹣2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;
(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点A(2,n)x轴上,则点B(n-2,n+2)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,使点B落在点E处,连结DE,若DE:AC=3:5,则的值为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.2a﹣a=1
B.(a﹣1)2=a2﹣1
C.aa2=a3
D.(2a)2=2a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A. a3a2a6B. (﹣3a23=﹣27a6

C. ab2a2b2D. 2a+3a5a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠CAB=90°ADBC于点D,点EAB的中点,ECAD交于点G,点FBC上.

1)如图1,若AC:AB=1:2EFCB,求证:EF=CD

2)如图2,若AC:AB=1: EFCE,求EF: EG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.
(1)若点M(2,a)是“理想点”,且在正比例函数y=kx(k为常数,k≠0)图象上,求这个正比例函数的表达式.
(2)函数y=3mx﹣1(m为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m的代数式表示出“理想点”的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____

查看答案和解析>>

同步练习册答案