【题目】如图,矩形ABCD中,,,E、F分别是AB、CD的中点
求证:四边形AECF是平行四边形;
是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;
如图,点P是线段AF上一动点且
求证:;
直接写出a的取值范围.
【答案】(1)证明见解析;(2)不存在;(3)①证明见解析;②.
【解析】
(1)由矩形性质得,,再证且即可;(2)不存在,由知:当时,四边形AECF为菱形,可得,此方程无解;(3)由平行线性质得,证得,,由,,得OE是三角形的中位线,所以,根据中垂线性质得;如图当P与F重合时,,的取值范围是.
证明:四边形ABCD是矩形,
,,
又、F分别是边AB、CD的中点,
,
四边形AECF是平行四边形;
解:不存在,
由知:四边形AECF是平行四边形;
当时,四边形AECF为菱形,
四边形ABCD是矩形,
,
,
,
方程无解,故不存在这样的a;
解:如图,
四边形AECF是平行四边形,
,
,
,
,
,,
,
,
;
如图,当P与F重合时,,
的取值范围是.
科目:初中数学 来源: 题型:
【题目】下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线 与抛物线 交于A、B两点,点A在x轴上,点B的横坐标为﹣8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题
(1)【问题发现】
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)【拓展研究】
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)【问题发现】
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.
(1)若点P在线段AB上,且AP=8,求线段MN的长度;
(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:
①当P在AB之间(含A或B);
②当P在A左边;
③当P在B右边;
你发现了什么规律?
(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.
图1
,
图2
,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)
根据以上信息,解答下列问题:
(1)该班共有名学生;
(2)在扇形统计图中,185型校服所对应的扇形圆心角的大小为;
(3)该班学生所穿校服型号的众数为 , 中位数为;
(4)如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,P是BC边上一动点,设BP=x,若能在AC边上找一点Q,使∠BQP=90°,则x的范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形组成的网格中,三角形AOB的顶点均在格点上,A(3,2),B(1,3),
(1)将三角形AOB先向左平移3个单位长度,后向下平移1个单位得到三角形A1O1B1,请直接作出三角形A1O1B1;
(2)请直接写出三角形A1O1B1三个顶点的坐标;
(3)三角形A1O1B1的面积为_______平方单位.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com