精英家教网 > 初中数学 > 题目详情

【题目】已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).

①画出△ABC向下平移4个单位长度得到的△A1B1C1 , 点C1的坐标是
②以点B为位似中心,在网格内画出△A2B2C2 , 使△A2B2C2与△ABC位似,且位似比为2:1 ,点C2的坐标是
③若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标

【答案】(2,-2);;(1,0); (2a﹣3,2b﹣4)
【解析】解:①如图所示:△A1B1C1,即为所求,点C1的坐标是:(2,﹣2);

所以答案是:(2,﹣2);

②如图所示:△A2BC2,即为所求,点C2的坐标是:(1,0);

所以答案是:(1,0);

③若M(a,b)为线段AC上任一点,

则点M的对应点M2的坐标为:(2a﹣3,2b﹣4).

所以答案是:(2a﹣3,2b﹣4).

【考点精析】认真审题,首先需要了解作图-位似变换(对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABC,ACB=90°,B=30°,AD为∠CAB的角平分线,CD=3,则DB=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.

(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN°.
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.
(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000/2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为1202

若购买者一次性付清所有房款,开发商有两种优惠方案:

方案一:降价8%,另外每套楼房赠送a元装修基金;

方案二:降价10%,没有其他赠送.

1)请写出售价y(元/2)与楼层x1≤x≤23x取整数)之间的函数关系式;

2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD边上的一动点,它从点A出发沿着ABCD路径匀速运动到点D,设PAD的面积为yP点的运动时间为x,则y关于x的函数图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.

(1)求证:OE是CD的垂直平分线.

(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为 的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线l上,AB与AG在同一直线上.

(1)图1中,小明发现DG=BE,请你帮他说明理由.
(2)小明将正方形ABCD按如图2那样绕点A旋转一周,旋转到当点C恰好落在直线l上时,请你直接写出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数的图像与轴交于点,一次函数的图像分别与轴、轴交于点,且与的图像交于点.

(1)的值;

(2),则的取值范围是

(3)求四边形的面积.

查看答案和解析>>

同步练习册答案