精英家教网 > 初中数学 > 题目详情

【题目】如图,在某场足球比赛中,球员甲从球门底部中心点的正前方处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为时达到最高点,此时足球飞行的水平距离为.已知球门的横梁高

在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)

守门员乙站在距离球门处,他跳起时手的最大摸高为,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?

【答案】(1)能射中球门;(2)他至少后退,才能阻止球员甲的射门.

【解析】

(1)、根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)、求出当x=2时,抛物线的函数值,与2.52米进行比较即可判断,再利用y=2.52求出x的值即可得出答案.

(1)、抛物线的顶点坐标是(4,3), 设抛物线的解析式是:y=a(x-4)2+3,
把(10,0)代入得36a+3=0,解得a=- 则抛物线是y=-(x-4)2+3,
当x=0时,y=-×16+3=3-=<2.44米, 故能射中球门;
(2)当x=2时,y=-(2-4)2+3=>2.52, ∴守门员乙不能阻止球员甲的此次射门,
当y=2.52时,y=-(x-4)2+3=2.52, 解得:x1=1.6,x2=6.4(舍去), ∴2-1.6=0.4(m),
答:他至少后退0.4m,才能阻止球员甲的射门.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了了解某校初三学生每周平均阅读时间的情况,随机抽查了该校初三m名学生,对其每周平均课外阅读时间进行统计,绘制了条形统计图和扇形统计图.

根据以上信息回答下列问题:

1)求m的值;

2)求扇形统计图中阅读时间为3小时的扇形圆心角的度数;

3)求出这组数据的平均数.(精确到01

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=-1,且抛物线经过A10),C03)两点,与x轴交于点B

1)若直线y=mx+n经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=4,CD=3,ABC=ACB=ADC=45°,则BD的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】苏果超市用5000元购进一批新品种的苹果进行试销,由于试销状况良好,超市又调拨11000元资金购进该种苹果,但这次的进价比试销时每千克多了0.5元,购进苹果的数量是试销时的2倍。

(1)试销时该品种苹果的进价是每千克多少元?

(2)如果超市将该品种的苹果按每千克7元定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A1A2A3是抛物线yx2+1x0)上的三点,且A1A2A3三点的横坐标为连续的整数,连接A1A3,过A2A2Qx轴于点Q,交A1A3于点P,则线段PA2的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:

(1)这项被调查的总人数是多少人?

(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;

(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

查看答案和解析>>

同步练习册答案