10£®Èç¹ûÒ»ÔªÒ»´Î·½³ÌµÄ½âÊÇÒ»ÔªÒ»´Î²»µÈʽ×éµÄ½â£¬ÄÇô³Æ¸ÃÒ»ÔªÒ»´Î·½³ÌΪ¸Ã²»µÈʽ×éµÄ¹ØÁª·½³Ì£®
£¨1£©Èô²»µÈʽ×é$\left\{\begin{array}{l}{x-\frac{1}{2}£¼2}\\{1+x£¾-3x+6}\end{array}\right.$µÄÒ»¸ö¹ØÁª·½³ÌµÄ½âÊÇÕûÊý£¬ÔòÕâ¸ö¹ØÁª·½³Ì¿ÉÒÔÊÇx-2=0£¨Ð´³öÒ»¸ö¼´¿É£©£»
£¨2£©Èô·½³Ì3-x=2x£¬3+x=2£¨x+$\frac{1}{2}$£©¶¼ÊǹØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{x£¼2x-m}\\{x-2¡Üm}\end{array}\right.$µÄ¹ØÁª·½³Ì£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©½â²»µÈʽ×éÇóµÃÆäÕûÊý½â£¬¸ù¾Ý¹ØÁª·½³ÌµÄ¶¨Òåд³öÒ»¸ö½âΪ2µÄ·½³Ì¼´¿É£»
£¨2£©½âÁ½¸ö·½³ÌÇóµÃxµÄÖµ£¬´Ó¶øÈ·¶¨²»µÈʽ×éµÄÕûÊý½â¼´¿ÉµÃ³ömµÄ·¶Î§£®

½â´ð ½â£º£¨1£©½â²»µÈʽx-$\frac{1}{2}$£¼2£¬µÃ£ºx£¼2.5£¬
½â²»µÈʽ1+x£¾-3x+6£¬µÃ£ºx£¾1.25£¬
Ôò²»µÈʽ×éµÄ½â¼¯Îª1.25£¼x£¼2.5£¬
¡àÆäÕûÊý½âΪ2£¬
Ôò¸Ã²»µÈʽ×éµÄ¹ØÁª·½³ÌΪx-2=0£¬
¹Ê´ð°¸Îª£ºx-2=0£»

£¨2£©½â·½³Ì3-x=2xµÃx=1£¬
½â·½³Ì3+x=2£¨x+$\frac{1}{2}$£©µÃx=2£¬
½â²»µÈʽ×é$\left\{\begin{array}{l}x£¼2x-m\\ x-2¡Üm\end{array}\right.$µÃm£¼x¡Üm+2£¬
¡ß1£¬2¶¼ÊǸò»µÈʽ×éµÄ½â£¬
¡à0¡Üm£¼1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é½âÒ»ÔªÒ»´Î·½³ÌºÍÒ»ÔªÒ»´Î²»µÈʽ×飬ÊìÁ·ÕÆÎÕ½âÒ»ÔªÒ»´Î·½³ÌºÍÒ»ÔªÒ»´Î²»µÈʽ×éµÄ¼¼ÄÜÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¶¨Ò壺
Êýѧ»î¶¯¿ÎÉÏ£¬ÀîÀÏʦ¸ø³öÈç϶¨Ò壺Èç¹ûÒ»¸öÈý½ÇÐÎÓÐÒ»±ßÉϵÄÖÐÏßµÈÓÚÕâÌõ±ßµÄÒ»°ë£¬ÄÇô³ÆÕâ¸öÈý½ÇÐÎΪ¡°ÖÇ»ÛÈý½ÇÐΡ±£®
Àí½â£º
£¨1£©Èçͼ1£¬ÒÑÖªA¡¢BÊÇ¡ÑOÉÏÁ½µã£¬ÇëÔÚÔ²ÉÏÕÒ³öÂú×ãÌõ¼þµÄµãC£¬Ê¹¡÷ABCΪ¡°ÖÇ»ÛÈý½ÇÐΡ±£¨»­³öµãCµÄλÖ㬱£Áô×÷ͼºÛ¼££©£»
£¨2£©Èçͼ2£¬ÔÚÕý·½ÐÎABCDÖУ¬EÊÇBCµÄÖе㣬FÊÇCDÉÏÒ»µã£¬ÇÒCF=$\frac{1}{4}$CD£¬ÊÔÅжϡ÷AEFÊÇ·ñΪ¡°ÖÇ»ÛÈý½ÇÐΡ±£¬²¢ËµÃ÷ÀíÓÉ£»
ÔËÓãº
£¨3£©Èçͼ3£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¡ÑOµÄ°ë¾¶Îª1£¬µãQÊÇÖ±Ïßy=3ÉϵÄÒ»µã£¬ÈôÔÚ¡ÑOÉÏ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷OPQΪ¡°ÖÇ»ÛÈý½ÇÐΡ±£¬µ±ÆäÃæ»ýÈ¡µÃ×îСֵʱ£¬Ö±½Óд³ö´ËʱµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈôʵÊýa¡¢bÂú×㣨a+b£©£¨a+b-6£©+9=0£¬Ôòa+bµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Öйú¹Å´úµÄÊýѧרÖø¡¶¾ÅÕÂËãÊõ¡·Óз½³ÌÎÊÌ⣺¡°Îåֻȸ¡¢ÁùÖ»Ñ࣬¹²ÖØ1½ï£¨µÈÓÚ16Á½£©£¬È¸ÖØÑàÇᣮ»¥»»ÆäÖÐÒ»Ö»£¬Ç¡ºÃÒ»ÑùÖØ£®¡±Éèÿֻȸ¡¢ÑàµÄÖØÁ¿¸÷ΪxÁ½£¬yÁ½£¬¿ÉµÃ·½³Ì×éÊÇ$\left\{\begin{array}{l}{5x+6y=14}\\{4x+y=5y+x}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©½â·½³Ì£º$\frac{x-1}{x}$+$\frac{3x}{x-1}$=4
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{2£¨x+8£©¡Ü10-4£¨x-3£©}\\{\frac{x+1}{2}-\frac{6x+7}{3}£¼1}\end{array}\right.$£¬²¢°ÑËüÃǵĽ⼯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬¹ýÔ­µãOµÄÖ±ÏßÓë·´±ÈÀýº¯Êýy1¡¢y2µÄͼÏóÔÚµÚÒ»ÏóÏÞÄÚ·Ö±ð½»ÓÚµãA¡¢B£¬ÇÒAΪOBµÄÖе㣮ÈôµãBµÄ×ø±êΪ£¨8£¬2£©£¬Ôòy1ÓëxµÄº¯Êý±í´ïʽÊÇy1=$\frac{4}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬µãOÊÇб±ßABÉÏÒ»µã£¬ÒÔOΪԲÐĵġÑO·Ö±ðÓë±ßAC¡¢BCÏàÇÐÓÚµãD¡¢E£¬Á¬½ÓOD¡¢OE£®
£¨1£©ÇóÖ¤£ºËıßÐÎCDOEÊÇÕý·½ÐΣ»
£¨2£©ÈôAC=3£¬BC=4£¬Çó¡ÑOµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â²»µÈʽ×é$\left\{\begin{array}{l}6-2x£¾2x-6\\ 2x+1£¾\frac{3+x}{2}\end{array}\right.$£¬²¢Ð´³öËüµÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨x-1-$\frac{3}{x+1}$£©¡Â$\frac{{x}^{2}-4x+4}{x+1}$£¬ÆäÖÐx=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸