精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.AOC=COB,则∠BOF=_____°.

【答案】30.

【解析】

根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOFEOFBOE求解.

解:∵∠AOCCOBAOB=180°,

∴∠AOC=180°×=80°,

∴∠BODAOC=80°,

又∵OE平分∠BOD

∴∠DOEBOD×80°=40°.

∴∠COE=180°﹣DOE=180°﹣40°=140°,

OF平分∠COE

∴∠EOFCOE×140°=70°,

∴∠BOFEOFBOE=70°﹣40°=30°.

故答案是:30.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:

跳绳数/个

81

85

90

93

95

98

100

人 数

1

2

8

11

5

将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).

(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点为坐标原点,点分别在轴正半轴和轴正半轴上,且,点从原点出发以每秒个单位长度的速度沿x轴正半轴方向运动.

1)求点的坐标.

2)连接设三角形的面积为,点的运动时间为,请用含的式子表示并直接写出的取值范围.

3)当点上运动时,将线段沿轴正方向平移,使点与点重合,点的对应点为点,连接,将线段沿轴正方向平移,使点与点重合,点的对应点为点,取的中点是否存在的值,使三角形的面积等于三角形的面积?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学化简代数式a+2+ 的过程,请仔细阅读并解答所提出的问题. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法从第步开始出现错误,正确的化简结果是
(2)原代数式的值能等于2吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内有∠AOB=60°,∠AOC=40°OD是∠AOB的平分线,OE是∠AOC的平分线,求∠DOE的度数.(请作图解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是ABCD的边CD的中点,延长AE交BC的延长线于点F.

(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=BOC=COD,下列结论中错误的是(  )

A. OBOC分别平分

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BN是等腰RtABC的外角∠CBM内部的一条射线,∠ABC=90°,AB=CB,点C关于BN的对称点为D,连接ADBDCD,其中CD,AD分别交射线BN于点EP

(1)依题意补全图形;

(2)若∠CBN=,求∠BDA的大小(用含的式子表示);

(3)用等式表示线段PBPAPE之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案