精英家教网 > 初中数学 > 题目详情
13.如图,四边形ABCD中,∠A=∠ABC=90°,AD=3,BC=5,E是边CD的中点,连结BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形.
(2)若BD=BC,求四边形BDFC的面积.

分析 (1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;
(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.

解答 (1)证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
又∵E是边CD的中点,
∴CE=DE,
在△BEC与△FED中,$\left\{\begin{array}{l}{∠CBE=∠DFE}&{\;}\\{∠BEC=∠FED}&{\;}\\{CE=DE}&{\;}\end{array}\right.$,
∴△BEC≌△FED,
∴BE=FE
∴四边形BDFC是平行四边形;
(2)解:∵BD=BC=5,
∴AB=$\sqrt{B{D}^{2}-A{D}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴四边形BDFC的面积=BC•AB=5×4=20.

点评 本题考查了平行四边形的判定与性质,平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.解方程(组)
(1)2-$\frac{2x+1}{3}$=$\frac{1+x}{2}$
(2)$\left\{\begin{array}{l}{3(x-5)=3y-6}\\{\frac{x-y}{3}=\frac{x+2y}{6}-2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若1是关于x的方程ax2+bx+c=0的一个根,则a,b,c应该满足的条件是a+b+c=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)2×$(\frac{1}{2})^{0}$-2-1
(2)a(a+2)-(a+1)(a-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:(1-$\frac{1}{x+1}$)÷$\frac{x-2}{x+1}$(从-1、2、3中选择一个适当的数作为x值代入).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若直角三角形的两条直角边分别是5cm和12cm,那么斜边是13cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AB∥CD,直线EF与AB,CD分别相交于点E、F,EP平分∠AEF,FP平分∠EFC.
(1)求证:△EPF是直角三角形;
(2)若∠PEF=30°,直接写出∠PFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,A(-1,0),B(3,0),C(0,2),CD∥x轴,CD=AB.
(1)求点D的坐标:
(2)四边形OCDB的面积S四边形OCDB
(3)在 y轴上是否存在点P,使S△PAB=S四边形OCDB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算
(1)(-2xy22÷$\frac{1}{3}$xy
(2)(x+2)2+2(x+2)(x-4)-(x+3)(x-3)

查看答案和解析>>

同步练习册答案