精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点在边上,且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是(

A.3.2B.2C.1.2D.1

【答案】C

【解析】

先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FPAB时,点PAB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.

如图所示:当PEAB

RtABC中,∵∠C=90°AC=6BC=8

AB==10

由翻折的性质可知:PF=FC=2,∠FPE=C=90°

PEAB

∴∠PDB=90°

由垂线段最短可知此时FD有最小值.

又∵FP为定值,

PD有最小值.

又∵∠A=A,∠ACB=ADF

∴△AFD∽△ABC

,即,解得:DF=3.2

PD=DF-FP=32-2=1.2

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.

(1)“从中任意抽取1个球不是红球就是白球   事件,从中任意抽取1个球是黑球   事件;

(2)从中任意抽取1个球恰好是红球的概率是   

(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,以为边作等边,延长分别交于点,连接相交于点,给出下列结论: ;②;③;④;其中正确的是(

A.①②③④B.②③C.①②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则BD的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:

  收集数据

从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:

八年级

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年级

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述数据

将成绩按如下分段整理、描述这两组样本数据:

成绩(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年级人数

0

0

1

11

7

1

九年级人数

1

0

0

7

10

2

(说明:成绩80分及以上为体质健康优秀,7079分为体质健康良好,6069分为体质健康合格,60分以下为体质健康不合格)

  分析数据

两组样本数据的平均数、中位数、众数、方差如表所示:

年级

平均数

中位数

众数

方差

八年级

78.3

77.5

75

33.6

九年级

78

80.5

a

52.1

1)表格中a的值为______

2)请你估计该校九年级体质健康优秀的学生人数为多少?

3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知中,,点上,点外,边交于点的延长线于点

1)求证:

2)当时,求的长;

3)设的面积为

①求关于的函数关系式.

②如图2,连接,若的面积是的面积的1.5倍时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲地到乙地有ABC三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:

线路  

公交车用时的频数

公交车用时

30<t

≤35

35<t

≤40

40<t

≤45

45<t

≤50

合计

A

59

151

a

124

500

B

50

b

122

278

500

C

45

265

167

c

500

1)将上面表格补充完整;

2)某天王先生和李女士从甲地到乙地,试用树状图或列表法求在早高峰期间两人刚好乘坐同一条线路的概率;

3)小张从甲地到乙地,早高峰期间用时不超过45分钟,请问小张应该选择哪条线路?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABC中,∠BAC90°ABAC

1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CDBD,∠BAC的平分线交BD于点E,连结CE

①求证:∠AED=∠CED

②用等式表示线段AECEBD之间的数量关系(直接写出结果);

2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CDBD,∠BAC的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AECEBD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数ykx+b(k≠0)的图象与反比例函数y (n≠0)的图象交于第二、四象限内的AB两点,与x轴交于点C,点B 坐标为(m,﹣1)ADx轴,且AD3tanAOD

(1)求该反比例函数和一次函数的解析式;

(2)求△AOB的面积;

(3)Ex轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

查看答案和解析>>

同步练习册答案