精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠BAD=∠ACB,∠ABC的平分线交AD于E,AE=CF,连接EF.
求证:BC=AB+EF.

【答案】分析:过点F作FG∥BE,交BC于点G,根据角平分线的定义,得∠ABE=∠CBE.再根据AAS证明△FGC≌△ABE,所以CG=AB,FG=BE,从而得到四边形BGFE是平行四边形,根据平行四边形的对边相等得BG=EF,即BC=AB+EF得证.
解答:证明:过点F作FG∥BE,交BC于点G,
∵BE平分∠ABC,
∴∠ABE=∠CBE.
∵FG∥EB,
∴∠FGC=∠CBE=∠ABE.
又∵∠BAD=∠ACB,AE=CF,
∴△FGC≌△ABE.
∴CG=AB,FG=BE.
∴四边形BGFE是平行四边形.
∴BG=EF,
∴BC=AB+EF.
点评:本题主要考查平行四边形的性质和判定.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案