精英家教网 > 初中数学 > 题目详情
如图,扇形OAB的半径OA=6,圆心角∠AOB=90°,C是上不同于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点H在线段DE上,且EH=DE.设EC的长为x,△CEH的面积为y,选项中表示y与x的函数关系式的图象可能是( )

A.
B.
C.
D.
【答案】分析:根据已知得出四边形OACE是矩形,再根据矩形的性质得出DE=OC=6,进而得出EH=4,HD=2,从而得出CE=x,EF=x,表示出FH的长,进而得出△CEH的面积,根据图象得出符合要求的图象.
解答:解:连接OC,作HF⊥EC于一点F,
∵扇形OAB的半径OA=6,圆心角∠AOB=90°,CD⊥OA于点D,
CE⊥OB于点E,
∴四边形ODCE是矩形,
∴DE=OC=6,
∵EH=DE,
∴EH=4,HD=2,
∵CE=x,
∴EF=x,
∴FH==
∴S△CEH=×x,
=
A.结合解析式得出只有A图象符合要求;
∵B.图象是一次函数与二次函数一部分,
∴不符合上面解析式,故此选项错误;
∵C.是反比例函数图象,
∴不符合上面解析式,故此选项错误;
∵D.图象是两部分一次函数,
∴不符合上面解析式,故此选项错误.
故选A.
点评:此题主要考查了动点问题的函数图象,得出函数解析式进而得出符合要求的图象是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是
 
;此时直线CD对应的函数关系式精英家教网
 

(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在
AB
上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形OCED与扇形OAB有公共顶点O,分别以OA、OB所在直线为x轴,y轴建立平面直角坐精英家教网标系.如图所示、正方形两个顶点C、D分别在x轴、y轴正半轴上移动、设OC=x,OA=3,则:
(1)当x=1时,正方形与扇形不重合的面积是
 

(2)当x=
 
时,直线CD与扇形OAB相切,此时切点坐标是
 

(3)当正方形有顶点恰好落在AB上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在数学公式上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(81):3.4 弧长和扇形的面积,圆锥的侧面展开图(解析版) 题型:解答题

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源:2006年福建省福州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•福州)正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在上时,求正方形与扇形不重合的面积.

查看答案和解析>>

同步练习册答案