精英家教网 > 初中数学 > 题目详情

【题目】(本小题满分12分)

已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.ACB = EDF = 90°,DEF = 45°AC = 8 cm,BC = 6 cm,EF = 9 cm

如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CBABC匀速,在DEF移的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移.当DEF的顶点D移动到AC边上时,DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设动时间为t(s)(0<t<4.5).

解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.

【答案】

(1)t=2

(2)t = 3时,y最小=

(3)t = 1s,点P、Q、F三点在同一条直线上

【解析】

解:1)点A在线段PQ的垂直平分线上,

AP = AQ.

∵∠DEF = 45°ACB = 90°,DEF+ACBEQC = 180°

∴∠EQC = 45°.

∴∠DEF =EQC.

CE = CQ.

由题意知:CE = tBP =2 t

CQ = t.

AQ = 8t.

RtABC中,由勾股定理得:AB = 10 cm .

AP = 10-2 t.

10-2 t = 8t.

解得:t = 2.

答:当t = 2 s时,点A在线段PQ的垂直平分线上. 4

(2)过P作,交BE于M.

RtABCRtBPM中,

. PM = .

BC = 6 cmCE = t BE = 6-t.

y = SABCSBPE ==

= = .

抛物线开口向上.

t = 3时,y最小=.

答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2.8

(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.

过P作,交ACN

.

∴△PAN BAC.

.

.

.

NQ = AQAN,

NQ = 8t-() =

∵∠ACB = 90°,B、C(E)、F在同一条直线上,

∴∠QCF = 90°QCF = PNQ.

∵∠FQC = PQN,

∴△QCFQNP .

. .

解得:t = 1.

答:当t = 1s,点P、Q、F三点在同一条直线上. 12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场,为了吸引顾客,在白色情人节当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

两红

一红一白

两白

礼金券(元)

18

24

18

1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.

2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程

(1)若方程有两个有理数根,求整数的值

(2)满足不等式,试讨论方程根的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB90°,点EF在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.

1)求∠ECF的度数;

2)若CE4B'F1,求线段BC的长和ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+ca≠0)图象的一部分,x=﹣1是对称轴,有下列判断:b﹣2a=04a﹣2b+c0a﹣b+c=﹣9a若(﹣3y1),(y2)是抛物线上两点,则y1y2,其中正确的是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l与⊙O 相离,OA⊥l于点A,交⊙O 于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.

(1)求证:AB是⊙O的切线;

(2)若PC=2,OA=3,求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴于点,过轴,双曲线两点(点在已知直线上),若,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知函数 y=x+1 的图象与 y 轴交于点 A一次函数 y=kx+b 的图象经过点 B0﹣1),与x 以及 y=x+1 的图象分别交于点 C、D且点 D 的坐标为1n),

1n= k= b=

2函数 y=kx+b 的函数值大于函数 y=x+1 的函数值则X的取值范围是

3求四边形 AOCD 的面积;

4 x轴上是否存在 P使得以点 PCD 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在请说明理由

查看答案和解析>>

同步练习册答案