【题目】在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB上的一个动点,记点P关于y轴对称的点为P′.
(1)当b=3时(如图1),
①求直线AB的函数表达式.
(2)②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标
(3)若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.
(4)当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b= .
【答案】
(1)
解:设直线AB的函数表达式为y=kx+b,
∵点A的坐标是(﹣4,0),点B的坐标是(0,3)
∴有 ,解得: .
故直线AB的函数表达式为y= x+3.
(2)(﹣9,0)、(﹣8,0)或(1,0)
(3)
解:过P′作PD⊥x轴于点D,如图所示.
∵点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),
∴直线AB的斜率为 = ,
即直线AB的解析式为y= x+b.
∵点P在直线AB上,
∴点P的坐标为(a, a+b),则点P′的坐标为(﹣a, a+b),点C的坐标为(a,0),点D的坐标为(﹣a,0),
∴P′D= a+b,AC=a+4,AD=4﹣a.
∵点P为第一象限的点,
∴a>0.
∵△ACP′是以点P′为直角顶点的等腰直角三角形,
∴有 ,即 ,
解得:
(4)
【解析】解:(1)①设直线AB的函数表达式为y=kx+b,
∵点A的坐标是(﹣4,0),点B的坐标是(0,3)
∴有 ,解得: .
故直线AB的函数表达式为y= x+3.
②∵点P是直线AB上的一个动点,点Q为x轴上一点(点O除外),
∴设点Q的坐标为(m,0),∠PAQ=∠BAO,
∴AQ=|m+4|.
在Rt△AOB中,AO=4,BO=3,AB= =5.
△APQ与△AOB全等有两种情况:
当AQ=AO时,即|m+4|=4,
解得:m=0(舍去),或m=﹣8,
此时点Q的坐标为(﹣8,0);
当AQ=AB时,即|m+4|=5,
解得:m=﹣9,或m=1,
此时点Q的坐标为(﹣9,0)或(1,0).
综上所述:点Q的所有坐标为(﹣9,0),(﹣8,0)或(1,0).
所以答案是:(﹣9,0),(﹣8,0)或(1,0).(4)由(3)可知:点P的坐标为(a, a+b),则点P′的坐标为(﹣a, a+b),直线AB的解析式为y= x+b.
则OP′的中点坐标为(﹣ , ),直线OP′的斜率为 =﹣ ﹣ .
∵线段OP′恰好被直线AB垂直平分,
∴有 ,
解得: ,或 (舍去).
所以答案是: .
科目:初中数学 来源: 题型:
【题目】计算(﹣3x)(2x2﹣5x﹣1)的结果是( )
A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3x C.﹣6x3+15x2 D.﹣6x3+15x2﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把(x-y)2-(y-x)分解因式为( )
A.(x-y)(x-y-1) B.(y-x)(x-y-1)
C.(y-x)(y-x-1) D.(y-x)(y-x+1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于数据:80,88,85,85,83,83,84.下列说法中错误的有( ) ①这组数据的平均数是84; ②这组数据的众数是85:
③这组数据的中位数是84; ④这组数据的方差是36.
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com