已知一元二次方程x2-2x+m-1=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.
分析:(1)若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m的取值范围.
(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m-1,故可求得x1和m的值.
解答:解:(1)根据题意得△=b
2-4ac=4-4×(m-1)>0,解得m<2;
(2)∵x
1是方程的实数根,
∴x
12-2x
1+m-1=0 ①
∵x
1,x
2是方程的两个实数根
∴x
1•x
2=m-1
∵x
12+x
1x
2=1,
∴x
12+m-1=1 ②
由①②得x
1=0.5,
把x=0.5代入原方程得,m=
.
点评:本题用到的知识点为:根的判别式大于0时,一元二次方程有两个不相等的实数根.若二次项的系数为1,则常数项为二根之积.