【题目】平行四边形一定具有的性质是( )
A. 四边都相等B. 对角相等C. 对角线相等D. 是轴对称图形
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、 、 ;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,等腰△ABC中,点E,F分别在腰AB,AC上,连结EF,若AE=CF,则称EF为该等腰三角形的逆等线.
(1)如图1,EF是等腰△ABC的逆等线,若EF⊥AB,AB=AC=5,AE =2,求逆等线EF的长;
(2)如图2,若等腰直角△DEF的直角顶点D恰好为等腰直角△ABC底边BC上的中点,且点E,F分别在AB,AC上,求证:EF为等腰△ABC的逆等线;
(3)如图3,等腰△AOB的顶点O与原点重合,底边OB在x轴上,反比例函数y= (x>0)的图象交△OAB于点C,D,若CD恰为△AOB的逆等线,过点C,D分别作CE⊥x轴,DF⊥x轴,已知OE=2,求OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC为直角,以AB为直径作⊙O交AC于点D,点E为BC中点,连结DE,DB.
(1)求证:DE与⊙O相切;
(2)若∠C=30°,求∠BOD的度数;
(3)在(2)的条件下,若⊙O半径为2, 求阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
(1)求甲、乙两工程队每天能完成的绿化的面积;
(2)两队合作完成此工程,若甲队参与施工x天,试用含x的代数式表示乙队施工的天数y;
(3)若甲队每天施工费用是0.6万元,乙队每天为0.2万元,且要求两队施工的天数之和不超过16天,应如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】因式分解与整数乘法一样,都是一种恒等变形,即在变形的过程中,形变值不变,于是将多项式x2﹣y2+(2x+2y)分解因式的结果为( )
A.(x+y)(x﹣y+2)
B.(x+y)(x﹣y﹣2)
C.(x﹣y)(x﹣y+2)
D.(x﹣y)(x﹣y﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2 , 四边形ABCD的面积是20cm2 , 则甲、乙、丙、丁四个长方形周长的总和为cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com