精英家教网 > 初中数学 > 题目详情
抛物线y=-x2可由抛物线y=-(x-2)2+3如何平移得到(    )
A.先向左平移2个单位,再向下平移3个单位
B.先向右平移2个单位,再向下平移3个单位
C.先向左平移2个单位,再向上平移3个单位
D.先向右平移2个单位,再向上平移3个单位
D.

试题分析:找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.
∵y=(x-2)2+3的顶点坐标为(2,3),y=-x2的顶点坐标为(0,0),
∴将抛物线y=-x2向右平移2个单位,再向上平移3个单位,可得到抛物线y=(x-2)2+3.
故选D.
考点: 二次函数图象与几何变换.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数y=x2-6x+n的部分图象如图所示,则它的对称轴为 x=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当       秒时,边恰好经过点;当       秒时,运动停止;
(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象. P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=       

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,如果抛物线分别向上、向右平移2个单位,那么新抛物线的解析式是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如右图,已知二次函数y=ax2+bx+c的图象过A(-3,0),对称轴为直线x=-1,下列结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b;⑤a-b>m(am+b)(m≠-1)其中正确的结论有(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线上部分点的横坐标x,纵坐标y的对应值如下表:




0
1
2

y

0
4
6
6
4

由上表可知,下列说法正确的个数是 (       )
①抛物线与x轴的一个交点为   ②抛物线与轴的交点为
③抛物线的对称轴是:       ④在对称轴左侧y随x增大而增大
A.1     B.2     C.3     D.4

查看答案和解析>>

同步练习册答案