精英家教网 > 初中数学 > 题目详情
(2010•邵阳)阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
【答案】分析:(1)根据正方形的圆的对称性,显然阴影部分的面积等于扇形OEF的面积减去三角形OEF的面积,即圆面积的减去正方形的面积的
(2)显然此时扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的,故(1)中结论仍成立;
(3)可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明四边形OGBH的面积和(2)中四边形的面积相等,故结论仍成立.
解答:解:(1)根据图形的对称性,得
S=

(2)结论仍成立.
∵扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的
∴S=


(3)作OP⊥AB,OQ⊥BC.
则∠OPG=∠OQH,OP=OQ,
∵∠POQ=∠MOH,
∴∠POG=∠QOH,
∵在△OPG与△OQH中,

∴△OPG≌△OQH(ASA).
结合(2)中的结论即可证明.
点评:一题多变是常见的类型,熟悉正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(18)(解析版) 题型:解答题

(2010•邵阳)阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年湖南省邵阳市中考数学试卷(解析版) 题型:解答题

(2010•邵阳)阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年福建省漳州市中考数学试卷(解析版) 题型:解答题

(2010•漳州)阅读题例,解答下题:
例解方程x2-|x-1|-1=0
解:
(1)当x-1≥0,即x≥1时x2-(x-1)-1=0x2-x=0
(2)当x-1<0,即x<1时x2+(x-1)-1=0x2+x-2=0
解得:x1=0(不合题设,舍去),x2=1
解得x1=1(不合题设,舍去)x2=-2
综上所述,原方程的解是x=1或x=-2
依照上例解法,解方程x2+2|x+2|-4=0.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市平阳县实验中学二模试卷(解析版) 题型:解答题

(2010•永嘉县二模)阅读下题及证明过程:
已知:如图,在△ABC中,点D是BC上的一点,点E是AD上的一点,且EB=EC,∠ABE=∠ACE
求证:∠BAE=∠CAE
证明:在△AEB和△AEC中
EB=EC( )
∠ABE=∠ACE( )
AE=AE( )
∴△AEB≌△AEC( )
∴∠BAE=∠CAE( )
上面的证明过程是否正确?若认为正确,请在各步后面的括号内填入依据:若认为不正确,请给予正确的证明.

查看答案和解析>>

同步练习册答案