精英家教网 > 初中数学 > 题目详情
如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是     .(把所有正确的结论的序号都填上)
①②③
连结OA、OD、OF、OC、DC、AD、CF,根据旋转的性质得∠AOD=∠COF=30°,再根据圆周角定理得∠ACD=∠FDC=15°,然后根据三角形外角性质得∠DQN=∠QCD+∠QDC=30°;同理可得∠AMN=30°,由△DEF为等边三角形得DE=DF,则弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根据等腰三角形的性质有ND=NA,于是可根据“AAS”判断△DNQ≌△ANM;利用QD=QC,ND=NA可判断△DNQ的周长等于AC的长;由于∠NDQ=60°,∠DQN=30°,则∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.
解:连结OA、OD、OF、OC、DC、AD、CF,如图,

∵△ABC绕点O顺时针旋转30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD=∠AOD=15°,∠FDC=∠COF=15°,
∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正确;
同理可得∠AMN=30°,
∵△DEF为等边三角形,
∴DE=DF,

++


∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中

∴△DNQ≌△ANM(AAS),所以②正确;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND+QD+NQ=NA+QC+NQ=AC,
即△DNQ的周长等于AC的长,所以③正确;
∵△DEF为等边三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④错误.
故答案为①②③.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在中,AB=AC,以AB为直径的交BC于点M,于点N.

(1)求证:MN是⊙O的切线;
(2)若,AB=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.
⑴ 求cosA的值.
⑵ 当以MN为直径的圆与△ABC一边相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

边长为a的正六边形的边心距是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE=  
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=  时,⊙C与直线AB相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是(  )
A.AG="BG" B.AB∥EF C.AD∥BC D.∠ABC=∠ADC

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1的半径是3cm,⊙O2的半径是2cm,O1O2=cm,则两圆的位置关系是(  )
A.相离
B.外切
C.相交
D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为(  )
A.35°B.45°
C.55°D.75°

查看答案和解析>>

同步练习册答案