精英家教网 > 初中数学 > 题目详情

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE

(1)求证:BD=EC

(2)AB=5 BD=6时,求△ACE的周长.

【答案】1)见详解;(224

【解析】

1)根据菱形的性质,可得AB=CDABCD,然后证明四边形BECD是平行四边形,即可得到结论成立;

2)易得AE=10CE=BD=6,由OB是中位线,得到OBCE,则CEAC,利用勾股定理求出AC=8,即可求出周长.

1)证明:四边形ABCD是菱形,

AB=CDABCD

又∵BE=AB

BE=CDBECD

∴四边形BECD 是平行四边形,

BD=EC

2)解:∵BE=AB=5

AE=10CE=BD=6

在菱形ABCD中,BDAC

∵点OAC中点,点BAE中点,

OBCE

CEAC

RtACE中,由勾股定理,得

∴△ACE的周长为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)试在图中作出ABCA为旋转中心,沿顺时针方向旋转90°后的图形AB1C1

(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;

(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①是一个长为,宽为的长方形,沿虚线用剪刀平均分成四个小长方形,然后按图②的形状拼成一个正方形.

1)图②中阴影部分的正方形的边长为

2)观察图②,三个代数式之间的数量关系式是

3)观察图③,写出一个代数恒等式:

4)在下面的虚线框中画出一个几何图形,使它的面积能表示成

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=(k0)的图象经过点A(﹣2,m),过点AABx轴于点B,且△AOB的面积为4.

(Ⅰ)求km的值;

(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1x4时,求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=300CBD=600

(1)求AB的长(精确到0.1米,参考数据:);

(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x26x+21.求:

1)直接写出抛物线y=x26x+21的顶点坐标;

2)当x2时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ACBCAC的垂直平分线分别交ACBC于点EF.点DAB边的中点,点MEF上一动点,若AB4,△ABC的面积是16,则△ADM周长的最小值为(  )

A.20B.16C.12D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一圆内接正八边形ABCDEFGH,若ADE的面积为8,则正八边形ABCDEFGH的面积为(  )

A. 32 B. 40 C. 24 D. 30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,的两条角平分线,且交于点

1)如图1,用等式表示这三条线段之间的数量关系,并证明你的结论;

小东通过观察、实验,提出猜想:.他发现先在上截取,使,连接,再利用三角形全等的判定和性质证明即可.

①下面是小东证明该猜想的部分思路,请补充完整:

)在上截取,使,连接,则可以证明 全等,判定它们全等的依据是

)由的两条角平分线,可以得出 °

②请直接利用),)已得到的结论,完成证明猜想的过程.

2)如图2,若 ,求证:

查看答案和解析>>

同步练习册答案