精英家教网 > 初中数学 > 题目详情
如图,BC是半圆的直径,O为圆心,A是半圆上弧BF的中点,AD⊥BC于点D,AD与BF交于一点E,BA与CF交于点N.
(1)依据图中现有的线段,找出所有的相等线段(半径除外);
(2)证明(1)中的任意一组相等线段.
(3)证明:BF=2AD.
分析:(1)根据题意可得相等线段有:AE=BE,AB=AF,CN=CB;
(2)连接AC,易证得∠BAD=∠BCA,由A是半圆上弧BF的中点,可得AB=AF,又可得∠BAD=∠ABE,则可得AE=BE,然后由三线合一,可得CB=AN;
(3)连接OA,易证得△OAD≌△OBG,继而可得BF=2AD.
解答:解:(1)相等线段有:AE=BE,AB=AF,CN=CB;

(2)证明:连接AC,
∵BC是直径,
∴∠BAC=90°,
∴∠ABC+∠BCA=90°,
∵AD⊥BC,
∴∠ABC+∠BAD=90°,
∴∠BAD=∠BCA,
∵A是半圆上弧BF的中点,
AB
=
AF

∴AB=AF;∠BCA=∠ABE,
∴∠BAD=∠ABE,
∴AE=BE;
∵∠BCA=∠ECA,CA⊥AN,
∴∠N=∠ABC,
∴CN=CB;

(3)证明:连接OA,交BF于点G,
∵A是弧BF的中点,O为圆心,
∴OA⊥BF,
∴BG=
1
2
BF,
∵AD⊥BC于点D,
∴∠ADO=∠BGO=90°,
在△OAD与△OBG中,
∠ADO=∠BGO
∠AOD=∠BOG
OA=OB

∴△OAD≌△OBG(AAS),
∴AD=BG,
∴BF=2AD.
点评:此题考查了圆周角定理、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分数学公式的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源:2002年山东省潍坊市中考数学试卷(解析版) 题型:解答题

(2002•潍坊)如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

同步练习册答案