精英家教网 > 初中数学 > 题目详情
6.如图,△ABC中,∠C=90°,∠B=60°,AC=2$\sqrt{3}$,点D在AC上,以CD为直径作⊙O与BA相切于点E,则BE的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 由∠C=90°,∠B=60°,AC=2$\sqrt{3}$,得到BC=$\frac{AC}{tan60°}$=$\frac{2\sqrt{3}}{\sqrt{3}}$=2,由于CD为⊙O直径,得到BC是⊙O的切线,根据切线长定理即可得到结论.

解答 解:∵∠C=90°,∠B=60°,AC=2$\sqrt{3}$,
∴BC=$\frac{AC}{tan60°}$=$\frac{2\sqrt{3}}{\sqrt{3}}$=2,
∵CD为⊙O直径,
∴BC是⊙O的切线,
∴BE=BC=2,
故选C.

点评 本题考查了切线的判定和性质,锐角三角函数,熟记定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.两个实根之和为3的一元二次方程是(  )
A.2x2-3x+1=0B.x2+1=3xC.x2-3x+4=0D.3x2+9x-1=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S2=8.5,S2=21.7,S2=15,S2=17.2,则四个班体考成绩最稳定的是(  )
A.甲班B.乙班C.丙班D.丁班

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.
(1)求证:CE与⊙O相切;
(2)若⊙O的半径为3,EF=4,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.
(1)求证:AC是⊙O的切线;
(2)若sinC=$\frac{4}{5}$,AC=6,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,以G(0,1)为圆心,2为半径的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为圆G上一动点,CF⊥AE于F,当点E从点B出发顺时针运动到点D时,点F经过的路径长为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(  )
A.函数有最小值B.对称轴是直线x=$\frac{1}{2}$
C.当-1<x<2时,y>0D.当x<$\frac{1}{2}$,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
①∠ABN=60°;②AM=1;③QN=$\frac{\sqrt{3}}{3}$;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是$\sqrt{3}$.
其中正确结论的序号是①④⑤.

查看答案和解析>>

同步练习册答案