精英家教网 > 初中数学 > 题目详情
14.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是(  )
A.1B.2C.3D.4

分析 ①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.
②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2-4a(c+2)=0,b2-4ac=8a>0,据此解答即可.
③首先根据对称轴x=-$\frac{b}{2a}$=-1,可得b=2a,然后根据b2-4ac=8a,确定出a的取值范围即可.
④根据对称轴是x=-1,而且x=0时,y>2,可得x=-2时,y>2,据此判断即可.

解答 解:∵抛物线开口向上,
∴a>0,
∵对称轴在y轴左边,
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c+2>2,
∴c>0,
∴abc>0,
∴结论①不正确;

∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,
∴△=0,
即b2-4a(c+2)=0,
∴b2-4ac=8a>0,
∴结论②不正确;

∵对称轴x=-$\frac{b}{2a}$=-1,
∴b=2a,
∵b2-4ac=8a,
∴4a2-4ac=8a,
∴a=c+2,
∵c>0,
∴a>2,
∴结论③正确;

∵对称轴是x=-1,而且x=0时,y>2,
∴x=-2时,y>2,
∴4a-2b+c+2>2,
∴4a-2b+c>0.
∴结论④正确.
综上,可得
正确结论的个数是2个:③④.
故选:B.

点评 此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.
(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由($\sqrt{5}$≈2.24,结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE=3.5cm时,四边形CEDF是矩形;
②当AE=2cm时,四边形CEDF是菱形.
(直接写出答案,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列运算正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.3x2y-x2y=3C.$\frac{{a}^{2}+{b}^{2}}{a+b}$=a+bD.(a2b)3=a6b3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列等式成立的是(  )
A.$\frac{1}{a}$+$\frac{2}{b}$=$\frac{3}{a+b}$B.$\frac{2}{2a+b}$=$\frac{1}{a+b}$C.$\frac{ab}{ab-{b}^{2}}$=$\frac{a}{a-b}$D.$\frac{a}{-a+b}$=-$\frac{a}{a+b}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为(  )
A.10:00B.12:00C.13:00D.16:00

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为(  )
A.145,136B.140,136C.136,148D.136,145

查看答案和解析>>

同步练习册答案